Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem7 Structured version   Unicode version

Theorem nodenselem7 27967
Description: Lemma for nodense 27969. 
A and  B are equal at all elements of the abstraction. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
nodenselem7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  C )  =  ( B `  C ) ) )
Distinct variable groups:    A, a    B, a    C, a

Proof of Theorem nodenselem7
StepHypRef Expression
1 nodenselem4 27964 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
21adantrl 715 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
3 onelon 4847 . . . . 5  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  C  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  ->  C  e.  On )
43ex 434 . . . 4  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  On  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  C  e.  On ) )
52, 4syl 16 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  C  e.  On ) )
62, 3sylan 471 . . . . . . . 8  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  (
( bday `  A )  =  ( bday `  B
)  /\  A <s B ) )  /\  C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  C  e.  On )
7 ontri1 4856 . . . . . . . . . . . . . 14  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  C  e.  On )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C  <->  -.  C  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) )
87con2bid 329 . . . . . . . . . . . . 13  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  C  e.  On )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  <->  -.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C ) )
98biimpd 207 . . . . . . . . . . . 12  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  C  e.  On )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C ) )
109ex 434 . . . . . . . . . . 11  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  On  ->  ( C  e.  On  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C ) ) )
1110com23 78 . . . . . . . . . 10  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  On  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( C  e.  On  ->  -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C ) ) )
122, 11syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( C  e.  On  ->  -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C ) ) )
1312imp 429 . . . . . . . 8  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  (
( bday `  A )  =  ( bday `  B
)  /\  A <s B ) )  /\  C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( C  e.  On  ->  -.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C ) )
146, 13mpd 15 . . . . . . 7  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  (
( bday `  A )  =  ( bday `  B
)  /\  A <s B ) )  /\  C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  -.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C )
15 intss1 4246 . . . . . . 7  |-  ( C  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  C )
1614, 15nsyl 121 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  (
( bday `  A )  =  ( bday `  B
)  /\  A <s B ) )  /\  C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  -.  C  e.  { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )
1716ex 434 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  -.  C  e.  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
18 fveq2 5794 . . . . . . . 8  |-  ( a  =  C  ->  ( A `  a )  =  ( A `  C ) )
19 fveq2 5794 . . . . . . . 8  |-  ( a  =  C  ->  ( B `  a )  =  ( B `  C ) )
2018, 19neeq12d 2728 . . . . . . 7  |-  ( a  =  C  ->  (
( A `  a
)  =/=  ( B `
 a )  <->  ( A `  C )  =/=  ( B `  C )
) )
2120elrab 3218 . . . . . 6  |-  ( C  e.  { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  <->  ( C  e.  On  /\  ( A `
 C )  =/=  ( B `  C
) ) )
2221notbii 296 . . . . 5  |-  ( -.  C  e.  { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  <->  -.  ( C  e.  On  /\  ( A `  C )  =/=  ( B `  C
) ) )
2317, 22syl6ib 226 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  -.  ( C  e.  On  /\  ( A `  C
)  =/=  ( B `
 C ) ) ) )
24 imnan 422 . . . 4  |-  ( ( C  e.  On  ->  -.  ( A `  C
)  =/=  ( B `
 C ) )  <->  -.  ( C  e.  On  /\  ( A `  C
)  =/=  ( B `
 C ) ) )
2523, 24syl6ibr 227 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( C  e.  On  ->  -.  ( A `  C
)  =/=  ( B `
 C ) ) ) )
265, 25mpdd 40 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  -.  ( A `  C
)  =/=  ( B `
 C ) ) )
27 df-ne 2647 . . 3  |-  ( ( A `  C )  =/=  ( B `  C )  <->  -.  ( A `  C )  =  ( B `  C ) )
2827con2bii 332 . 2  |-  ( ( A `  C )  =  ( B `  C )  <->  -.  ( A `  C )  =/=  ( B `  C
) )
2926, 28syl6ibr 227 1  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( C  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  C )  =  ( B `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2645   {crab 2800    C_ wss 3431   |^|cint 4231   class class class wbr 4395   Oncon0 4822   ` cfv 5521   Nocsur 27920   <scslt 27921   bdaycbday 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-1o 7025  df-2o 7026  df-no 27923  df-slt 27924  df-bday 27925
This theorem is referenced by:  nodense  27969
  Copyright terms: Public domain W3C validator