Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem3 Unicode version

Theorem nodenselem3 25551
Description: Lemma for nodense 25557. If one surreal is older than another, then there is an ordinal at which they are not equal. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
) )
Distinct variable groups:    A, a    B, a

Proof of Theorem nodenselem3
StepHypRef Expression
1 bdayval 25516 . . . 4  |-  ( B  e.  No  ->  ( bday `  B )  =  dom  B )
21adantl 453 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( bday `  B
)  =  dom  B
)
32eleq2d 2471 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  <->  ( bday `  A )  e.  dom  B ) )
4 bdayelon 25548 . . . 4  |-  ( bday `  A )  e.  On
5 nosgnn0 25526 . . . . . . . . 9  |-  -.  (/)  e.  { 1o ,  2o }
6 norn 25519 . . . . . . . . . . . 12  |-  ( B  e.  No  ->  ran  B 
C_  { 1o ,  2o } )
76adantr 452 . . . . . . . . . . 11  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  ->  ran  B  C_  { 1o ,  2o } )
8 nofun 25517 . . . . . . . . . . . 12  |-  ( B  e.  No  ->  Fun  B )
9 fvelrn 5825 . . . . . . . . . . . 12  |-  ( ( Fun  B  /\  ( bday `  A )  e. 
dom  B )  -> 
( B `  ( bday `  A ) )  e.  ran  B )
108, 9sylan 458 . . . . . . . . . . 11  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  e.  ran  B )
117, 10sseldd 3309 . . . . . . . . . 10  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  e.  { 1o ,  2o } )
12 eleq1 2464 . . . . . . . . . 10  |-  ( ( B `  ( bday `  A ) )  =  (/)  ->  ( ( B `
 ( bday `  A
) )  e.  { 1o ,  2o }  <->  (/)  e.  { 1o ,  2o } ) )
1311, 12syl5ibcom 212 . . . . . . . . 9  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( ( B `  ( bday `  A )
)  =  (/)  ->  (/)  e.  { 1o ,  2o } ) )
145, 13mtoi 171 . . . . . . . 8  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  ->  -.  ( B `  ( bday `  A ) )  =  (/) )
1514neneqad 2637 . . . . . . 7  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  =/=  (/) )
1615adantll 695 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( B `  ( bday `  A
) )  =/=  (/) )
17 fvnobday 25550 . . . . . . 7  |-  ( A  e.  No  ->  ( A `  ( bday `  A ) )  =  (/) )
1817ad2antrr 707 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( A `  ( bday `  A
) )  =  (/) )
1916, 18neeqtrrd 2591 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( B `  ( bday `  A
) )  =/=  ( A `  ( bday `  A ) ) )
2019necomd 2650 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( A `  ( bday `  A
) )  =/=  ( B `  ( bday `  A ) ) )
21 fveq2 5687 . . . . . 6  |-  ( a  =  ( bday `  A
)  ->  ( A `  a )  =  ( A `  ( bday `  A ) ) )
22 fveq2 5687 . . . . . 6  |-  ( a  =  ( bday `  A
)  ->  ( B `  a )  =  ( B `  ( bday `  A ) ) )
2321, 22neeq12d 2582 . . . . 5  |-  ( a  =  ( bday `  A
)  ->  ( ( A `  a )  =/=  ( B `  a
)  <->  ( A `  ( bday `  A )
)  =/=  ( B `
 ( bday `  A
) ) ) )
2423rspcev 3012 . . . 4  |-  ( ( ( bday `  A
)  e.  On  /\  ( A `  ( bday `  A ) )  =/=  ( B `  ( bday `  A ) ) )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
)
254, 20, 24sylancr 645 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
)
2625ex 424 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  dom  B  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a ) ) )
273, 26sylbid 207 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667    C_ wss 3280   (/)c0 3588   {cpr 3775   Oncon0 4541   dom cdm 4837   ran crn 4838   Fun wfun 5407   ` cfv 5413   1oc1o 6676   2oc2o 6677   Nocsur 25508   bdaycbday 25510
This theorem is referenced by:  nodenselem4  25552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-1o 6683  df-2o 6684  df-no 25511  df-bday 25513
  Copyright terms: Public domain W3C validator