Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem3 Structured version   Unicode version

Theorem nodenselem3 29048
Description: Lemma for nodense 29054. If one surreal is older than another, then there is an ordinal at which they are not equal. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
) )
Distinct variable groups:    A, a    B, a

Proof of Theorem nodenselem3
StepHypRef Expression
1 bdayval 29013 . . . 4  |-  ( B  e.  No  ->  ( bday `  B )  =  dom  B )
21adantl 466 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( bday `  B
)  =  dom  B
)
32eleq2d 2537 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  <->  ( bday `  A )  e.  dom  B ) )
4 bdayelon 29045 . . . 4  |-  ( bday `  A )  e.  On
5 nosgnn0 29023 . . . . . . . . 9  |-  -.  (/)  e.  { 1o ,  2o }
6 norn 29016 . . . . . . . . . . . 12  |-  ( B  e.  No  ->  ran  B 
C_  { 1o ,  2o } )
76adantr 465 . . . . . . . . . . 11  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  ->  ran  B  C_  { 1o ,  2o } )
8 nofun 29014 . . . . . . . . . . . 12  |-  ( B  e.  No  ->  Fun  B )
9 fvelrn 6017 . . . . . . . . . . . 12  |-  ( ( Fun  B  /\  ( bday `  A )  e. 
dom  B )  -> 
( B `  ( bday `  A ) )  e.  ran  B )
108, 9sylan 471 . . . . . . . . . . 11  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  e.  ran  B )
117, 10sseldd 3505 . . . . . . . . . 10  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  e.  { 1o ,  2o } )
12 eleq1 2539 . . . . . . . . . 10  |-  ( ( B `  ( bday `  A ) )  =  (/)  ->  ( ( B `
 ( bday `  A
) )  e.  { 1o ,  2o }  <->  (/)  e.  { 1o ,  2o } ) )
1311, 12syl5ibcom 220 . . . . . . . . 9  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( ( B `  ( bday `  A )
)  =  (/)  ->  (/)  e.  { 1o ,  2o } ) )
145, 13mtoi 178 . . . . . . . 8  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  ->  -.  ( B `  ( bday `  A ) )  =  (/) )
1514neqned 2670 . . . . . . 7  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  =/=  (/) )
1615adantll 713 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( B `  ( bday `  A
) )  =/=  (/) )
17 fvnobday 29047 . . . . . . 7  |-  ( A  e.  No  ->  ( A `  ( bday `  A ) )  =  (/) )
1817ad2antrr 725 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( A `  ( bday `  A
) )  =  (/) )
1916, 18neeqtrrd 2767 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( B `  ( bday `  A
) )  =/=  ( A `  ( bday `  A ) ) )
2019necomd 2738 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( A `  ( bday `  A
) )  =/=  ( B `  ( bday `  A ) ) )
21 fveq2 5866 . . . . . 6  |-  ( a  =  ( bday `  A
)  ->  ( A `  a )  =  ( A `  ( bday `  A ) ) )
22 fveq2 5866 . . . . . 6  |-  ( a  =  ( bday `  A
)  ->  ( B `  a )  =  ( B `  ( bday `  A ) ) )
2321, 22neeq12d 2746 . . . . 5  |-  ( a  =  ( bday `  A
)  ->  ( ( A `  a )  =/=  ( B `  a
)  <->  ( A `  ( bday `  A )
)  =/=  ( B `
 ( bday `  A
) ) ) )
2423rspcev 3214 . . . 4  |-  ( ( ( bday `  A
)  e.  On  /\  ( A `  ( bday `  A ) )  =/=  ( B `  ( bday `  A ) ) )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
)
254, 20, 24sylancr 663 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
)
2625ex 434 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  dom  B  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a ) ) )
273, 26sylbid 215 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    C_ wss 3476   (/)c0 3785   {cpr 4029   Oncon0 4878   dom cdm 4999   ran crn 5000   Fun wfun 5582   ` cfv 5588   1oc1o 7123   2oc2o 7124   Nocsur 29005   bdaycbday 29007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-1o 7130  df-2o 7131  df-no 29008  df-bday 29010
This theorem is referenced by:  nodenselem4  29049
  Copyright terms: Public domain W3C validator