Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nocvxmin Structured version   Unicode version

Theorem nocvxmin 27996
Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxmin  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  E! w  e.  A  ( bday `  w )  = 
|^| ( bday " A
) )
Distinct variable group:    w, A, x, y, z

Proof of Theorem nocvxmin
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 imassrn 5291 . . . . . 6  |-  ( bday " A )  C_  ran  bday
2 bdayrn 27982 . . . . . 6  |-  ran  bday  =  On
31, 2sseqtri 3499 . . . . 5  |-  ( bday " A )  C_  On
4 bdaydm 27983 . . . . . . . . . . 11  |-  dom  bday  =  No
54sseq2i 3492 . . . . . . . . . 10  |-  ( A 
C_  dom  bday  <->  A  C_  No )
6 bdayfun 27981 . . . . . . . . . . 11  |-  Fun  bday
7 funfvima2 6065 . . . . . . . . . . 11  |-  ( ( Fun  bday  /\  A  C_  dom  bday )  ->  (
x  e.  A  -> 
( bday `  x )  e.  ( bday " A
) ) )
86, 7mpan 670 . . . . . . . . . 10  |-  ( A 
C_  dom  bday  ->  (
x  e.  A  -> 
( bday `  x )  e.  ( bday " A
) ) )
95, 8sylbir 213 . . . . . . . . 9  |-  ( A 
C_  No  ->  ( x  e.  A  ->  ( bday `  x )  e.  ( bday " A
) ) )
10 elex2 3090 . . . . . . . . 9  |-  ( (
bday `  x )  e.  ( bday " A
)  ->  E. w  w  e.  ( bday " A ) )
119, 10syl6 33 . . . . . . . 8  |-  ( A 
C_  No  ->  ( x  e.  A  ->  E. w  w  e.  ( bday " A ) ) )
1211exlimdv 1691 . . . . . . 7  |-  ( A 
C_  No  ->  ( E. x  x  e.  A  ->  E. w  w  e.  ( bday " A
) ) )
13 n0 3757 . . . . . . 7  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
14 n0 3757 . . . . . . 7  |-  ( (
bday " A )  =/=  (/) 
<->  E. w  w  e.  ( bday " A
) )
1512, 13, 143imtr4g 270 . . . . . 6  |-  ( A 
C_  No  ->  ( A  =/=  (/)  ->  ( bday " A )  =/=  (/) ) )
1615impcom 430 . . . . 5  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  ( bday " A )  =/=  (/) )
17 onint 6519 . . . . 5  |-  ( ( ( bday " A
)  C_  On  /\  ( bday " A )  =/=  (/) )  ->  |^| ( bday " A )  e.  ( bday " A
) )
183, 16, 17sylancr 663 . . . 4  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  |^| ( bday " A )  e.  ( bday " A
) )
19 bdayfn 27984 . . . . . 6  |-  bday  Fn  No
20 fvelimab 5859 . . . . . 6  |-  ( (
bday  Fn  No  /\  A  C_  No )  ->  ( |^| ( bday " A
)  e.  ( bday " A )  <->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) ) )
2119, 20mpan 670 . . . . 5  |-  ( A 
C_  No  ->  ( |^| ( bday " A )  e.  ( bday " A
)  <->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A
) ) )
2221adantl 466 . . . 4  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  ( |^| ( bday " A
)  e.  ( bday " A )  <->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) ) )
2318, 22mpbid 210 . . 3  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) )
24233adant3 1008 . 2  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) )
25 ssel 3461 . . . . . . . . 9  |-  ( A 
C_  No  ->  ( w  e.  A  ->  w  e.  No ) )
26 ssel 3461 . . . . . . . . 9  |-  ( A 
C_  No  ->  ( t  e.  A  ->  t  e.  No ) )
2725, 26anim12d 563 . . . . . . . 8  |-  ( A 
C_  No  ->  ( ( w  e.  A  /\  t  e.  A )  ->  ( w  e.  No  /\  t  e.  No ) ) )
2827imp 429 . . . . . . 7  |-  ( ( A  C_  No  /\  (
w  e.  A  /\  t  e.  A )
)  ->  ( w  e.  No  /\  t  e.  No ) )
2928ad2ant2r 746 . . . . . 6  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  -> 
( w  e.  No  /\  t  e.  No ) )
30 nocvxminlem 27995 . . . . . . 7  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( ( w  e.  A  /\  t  e.  A )  /\  (
( bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) )  ->  -.  w <s t ) )
3130imp 429 . . . . . 6  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  ->  -.  w <s t )
32 ancom 450 . . . . . . . . 9  |-  ( ( w  e.  A  /\  t  e.  A )  <->  ( t  e.  A  /\  w  e.  A )
)
33 ancom 450 . . . . . . . . 9  |-  ( ( ( bday `  w
)  =  |^| ( bday " A )  /\  ( bday `  t )  =  |^| ( bday " A
) )  <->  ( ( bday `  t )  = 
|^| ( bday " A
)  /\  ( bday `  w )  =  |^| ( bday " A ) ) )
3432, 33anbi12i 697 . . . . . . . 8  |-  ( ( ( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) )  <->  ( (
t  e.  A  /\  w  e.  A )  /\  ( ( bday `  t
)  =  |^| ( bday " A )  /\  ( bday `  w )  =  |^| ( bday " A
) ) ) )
35 nocvxminlem 27995 . . . . . . . 8  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( ( t  e.  A  /\  w  e.  A )  /\  (
( bday `  t )  =  |^| ( bday " A
)  /\  ( bday `  w )  =  |^| ( bday " A ) ) )  ->  -.  t <s w ) )
3634, 35syl5bi 217 . . . . . . 7  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( ( w  e.  A  /\  t  e.  A )  /\  (
( bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) )  ->  -.  t <s w ) )
3736imp 429 . . . . . 6  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  ->  -.  t <s w )
38 slttrieq2 27979 . . . . . . 7  |-  ( ( w  e.  No  /\  t  e.  No )  ->  ( w  =  t  <-> 
( -.  w <s t  /\  -.  t <s w ) ) )
3938biimpar 485 . . . . . 6  |-  ( ( ( w  e.  No  /\  t  e.  No )  /\  ( -.  w <s t  /\  -.  t <s w ) )  ->  w  =  t )
4029, 31, 37, 39syl12anc 1217 . . . . 5  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  ->  w  =  t )
4140exp32 605 . . . 4  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( w  e.  A  /\  t  e.  A )  ->  (
( ( bday `  w
)  =  |^| ( bday " A )  /\  ( bday `  t )  =  |^| ( bday " A
) )  ->  w  =  t ) ) )
4241ralrimivv 2913 . . 3  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  ->  A. w  e.  A  A. t  e.  A  ( ( ( bday `  w )  =  |^| ( bday " A )  /\  ( bday `  t
)  =  |^| ( bday " A ) )  ->  w  =  t ) )
43423adant1 1006 . 2  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  A. w  e.  A  A. t  e.  A  ( (
( bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) )  ->  w  =  t ) )
44 fveq2 5802 . . . 4  |-  ( w  =  t  ->  ( bday `  w )  =  ( bday `  t
) )
4544eqeq1d 2456 . . 3  |-  ( w  =  t  ->  (
( bday `  w )  =  |^| ( bday " A
)  <->  ( bday `  t
)  =  |^| ( bday " A ) ) )
4645reu4 3260 . 2  |-  ( E! w  e.  A  (
bday `  w )  =  |^| ( bday " A
)  <->  ( E. w  e.  A  ( bday `  w )  =  |^| ( bday " A )  /\  A. w  e.  A  A. t  e.  A  ( ( (
bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) )  ->  w  =  t ) ) )
4724, 43, 46sylanbrc 664 1  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  E! w  e.  A  ( bday `  w )  = 
|^| ( bday " A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800   E!wreu 2801    C_ wss 3439   (/)c0 3748   |^|cint 4239   class class class wbr 4403   Oncon0 4830   dom cdm 4951   ran crn 4952   "cima 4954   Fun wfun 5523    Fn wfn 5524   ` cfv 5529   Nocsur 27945   <scslt 27946   bdaycbday 27947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-1o 7033  df-2o 7034  df-no 27948  df-slt 27949  df-bday 27950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator