Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nobndlem6 Structured version   Unicode version

Theorem nobndlem6 29384
Description: Lemma for nobndup 29387 and nobnddown 29388. Given an element  A of  F, then the first position where it differs from  X is strictly less than  C (Contributed by Scott Fenton, 3-Aug-2011.)
Hypotheses
Ref Expression
nobndlem6.1  |-  X  e. 
{ 1o ,  2o }
nobndlem6.2  |-  C  = 
|^| { a  e.  On  |  A. n  e.  F  E. b  e.  a 
( n `  b
)  =/=  X }
Assertion
Ref Expression
nobndlem6  |-  ( ( F  C_  No  /\  A  e.  F )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  C
)
Distinct variable groups:    A, a,
b, x    F, a,
b    X, a, b, x   
n, X, a, b    A, n    n, F
Allowed substitution hints:    C( x, n, a, b)    F( x)

Proof of Theorem nobndlem6
StepHypRef Expression
1 bdayelon 29367 . . . . 5  |-  ( bday `  A )  e.  On
2 ssel2 3504 . . . . . 6  |-  ( ( F  C_  No  /\  A  e.  F )  ->  A  e.  No )
3 nobndlem6.1 . . . . . . . 8  |-  X  e. 
{ 1o ,  2o }
43nosgnn0i 29346 . . . . . . 7  |-  (/)  =/=  X
5 fvnobday 29369 . . . . . . . 8  |-  ( A  e.  No  ->  ( A `  ( bday `  A ) )  =  (/) )
65neeq1d 2744 . . . . . . 7  |-  ( A  e.  No  ->  (
( A `  ( bday `  A ) )  =/=  X  <->  (/)  =/=  X
) )
74, 6mpbiri 233 . . . . . 6  |-  ( A  e.  No  ->  ( A `  ( bday `  A ) )  =/= 
X )
82, 7syl 16 . . . . 5  |-  ( ( F  C_  No  /\  A  e.  F )  ->  ( A `  ( bday `  A ) )  =/= 
X )
9 fveq2 5872 . . . . . . 7  |-  ( x  =  ( bday `  A
)  ->  ( A `  x )  =  ( A `  ( bday `  A ) ) )
109neeq1d 2744 . . . . . 6  |-  ( x  =  ( bday `  A
)  ->  ( ( A `  x )  =/=  X  <->  ( A `  ( bday `  A )
)  =/=  X ) )
1110rspcev 3219 . . . . 5  |-  ( ( ( bday `  A
)  e.  On  /\  ( A `  ( bday `  A ) )  =/= 
X )  ->  E. x  e.  On  ( A `  x )  =/=  X
)
121, 8, 11sylancr 663 . . . 4  |-  ( ( F  C_  No  /\  A  e.  F )  ->  E. x  e.  On  ( A `  x )  =/=  X
)
13 onintrab2 6632 . . . 4  |-  ( E. x  e.  On  ( A `  x )  =/=  X  <->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  On )
1412, 13sylib 196 . . 3  |-  ( ( F  C_  No  /\  A  e.  F )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  On )
15 fveq1 5871 . . . . . . . . 9  |-  ( n  =  A  ->  (
n `  b )  =  ( A `  b ) )
1615neeq1d 2744 . . . . . . . 8  |-  ( n  =  A  ->  (
( n `  b
)  =/=  X  <->  ( A `  b )  =/=  X
) )
1716rexbidv 2978 . . . . . . 7  |-  ( n  =  A  ->  ( E. b  e.  a 
( n `  b
)  =/=  X  <->  E. b  e.  a  ( A `  b )  =/=  X
) )
1817rspcv 3215 . . . . . 6  |-  ( A  e.  F  ->  ( A. n  e.  F  E. b  e.  a 
( n `  b
)  =/=  X  ->  E. b  e.  a 
( A `  b
)  =/=  X ) )
1918ad2antlr 726 . . . . 5  |-  ( ( ( F  C_  No  /\  A  e.  F )  /\  a  e.  On )  ->  ( A. n  e.  F  E. b  e.  a  ( n `  b )  =/=  X  ->  E. b  e.  a  ( A `  b
)  =/=  X ) )
2014ad2antrr 725 . . . . . . 7  |-  ( ( ( ( F  C_  No  /\  A  e.  F
)  /\  a  e.  On )  /\  (
b  e.  a  /\  ( A `  b )  =/=  X ) )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  On )
21 simplr 754 . . . . . . 7  |-  ( ( ( ( F  C_  No  /\  A  e.  F
)  /\  a  e.  On )  /\  (
b  e.  a  /\  ( A `  b )  =/=  X ) )  ->  a  e.  On )
22 onelon 4909 . . . . . . . . . . 11  |-  ( ( a  e.  On  /\  b  e.  a )  ->  b  e.  On )
2322anim1i 568 . . . . . . . . . 10  |-  ( ( ( a  e.  On  /\  b  e.  a )  /\  ( A `  b )  =/=  X
)  ->  ( b  e.  On  /\  ( A `
 b )  =/= 
X ) )
2423anasss 647 . . . . . . . . 9  |-  ( ( a  e.  On  /\  ( b  e.  a  /\  ( A `  b )  =/=  X
) )  ->  (
b  e.  On  /\  ( A `  b )  =/=  X ) )
25 fveq2 5872 . . . . . . . . . . 11  |-  ( x  =  b  ->  ( A `  x )  =  ( A `  b ) )
2625neeq1d 2744 . . . . . . . . . 10  |-  ( x  =  b  ->  (
( A `  x
)  =/=  X  <->  ( A `  b )  =/=  X
) )
2726intminss 4314 . . . . . . . . 9  |-  ( ( b  e.  On  /\  ( A `  b )  =/=  X )  ->  |^| { x  e.  On  |  ( A `  x )  =/=  X }  C_  b )
2824, 27syl 16 . . . . . . . 8  |-  ( ( a  e.  On  /\  ( b  e.  a  /\  ( A `  b )  =/=  X
) )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  C_  b
)
2928adantll 713 . . . . . . 7  |-  ( ( ( ( F  C_  No  /\  A  e.  F
)  /\  a  e.  On )  /\  (
b  e.  a  /\  ( A `  b )  =/=  X ) )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  C_  b
)
30 simprl 755 . . . . . . 7  |-  ( ( ( ( F  C_  No  /\  A  e.  F
)  /\  a  e.  On )  /\  (
b  e.  a  /\  ( A `  b )  =/=  X ) )  ->  b  e.  a )
31 ontr2 4931 . . . . . . . 8  |-  ( (
|^| { x  e.  On  |  ( A `  x )  =/=  X }  e.  On  /\  a  e.  On )  ->  (
( |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  C_  b  /\  b  e.  a
)  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  a ) )
3231imp 429 . . . . . . 7  |-  ( ( ( |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  On  /\  a  e.  On )  /\  ( |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  C_  b  /\  b  e.  a
) )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  a )
3320, 21, 29, 30, 32syl22anc 1229 . . . . . 6  |-  ( ( ( ( F  C_  No  /\  A  e.  F
)  /\  a  e.  On )  /\  (
b  e.  a  /\  ( A `  b )  =/=  X ) )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  a )
3433rexlimdvaa 2960 . . . . 5  |-  ( ( ( F  C_  No  /\  A  e.  F )  /\  a  e.  On )  ->  ( E. b  e.  a  ( A `  b )  =/=  X  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  a ) )
3519, 34syld 44 . . . 4  |-  ( ( ( F  C_  No  /\  A  e.  F )  /\  a  e.  On )  ->  ( A. n  e.  F  E. b  e.  a  ( n `  b )  =/=  X  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  a ) )
3635ralrimiva 2881 . . 3  |-  ( ( F  C_  No  /\  A  e.  F )  ->  A. a  e.  On  ( A. n  e.  F  E. b  e.  a  ( n `  b )  =/=  X  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  a ) )
37 elintrabg 4301 . . . 4  |-  ( |^| { x  e.  On  | 
( A `  x
)  =/=  X }  e.  On  ->  ( |^| { x  e.  On  | 
( A `  x
)  =/=  X }  e.  |^| { a  e.  On  |  A. n  e.  F  E. b  e.  a  ( n `  b )  =/=  X } 
<-> 
A. a  e.  On  ( A. n  e.  F  E. b  e.  a 
( n `  b
)  =/=  X  ->  |^| { x  e.  On  |  ( A `  x )  =/=  X }  e.  a )
) )
3837biimpar 485 . . 3  |-  ( (
|^| { x  e.  On  |  ( A `  x )  =/=  X }  e.  On  /\  A. a  e.  On  ( A. n  e.  F  E. b  e.  a 
( n `  b
)  =/=  X  ->  |^| { x  e.  On  |  ( A `  x )  =/=  X }  e.  a )
)  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  |^| { a  e.  On  |  A. n  e.  F  E. b  e.  a 
( n `  b
)  =/=  X }
)
3914, 36, 38syl2anc 661 . 2  |-  ( ( F  C_  No  /\  A  e.  F )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  |^| { a  e.  On  |  A. n  e.  F  E. b  e.  a 
( n `  b
)  =/=  X }
)
40 nobndlem6.2 . 2  |-  C  = 
|^| { a  e.  On  |  A. n  e.  F  E. b  e.  a 
( n `  b
)  =/=  X }
4139, 40syl6eleqr 2566 1  |-  ( ( F  C_  No  /\  A  e.  F )  ->  |^| { x  e.  On  |  ( A `
 x )  =/= 
X }  e.  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   {crab 2821    C_ wss 3481   (/)c0 3790   {cpr 4035   |^|cint 4288   Oncon0 4884   ` cfv 5594   1oc1o 7135   2oc2o 7136   Nocsur 29327   bdaycbday 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-1o 7142  df-2o 7143  df-no 29330  df-bday 29332
This theorem is referenced by:  nobndlem7  29385  nobndup  29387  nobnddown  29388
  Copyright terms: Public domain W3C validator