Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nobndlem1 Unicode version

Theorem nobndlem1 25560
Description: Lemma for nobndup 25568 and nobnddown 25569. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.)
Assertion
Ref Expression
nobndlem1  |-  ( A  e.  V  ->  suc  U. ( bday " A
)  e.  On )

Proof of Theorem nobndlem1
StepHypRef Expression
1 bdayfun 25544 . . . . 5  |-  Fun  bday
2 funimaexg 5489 . . . . 5  |-  ( ( Fun  bday  /\  A  e.  V )  ->  ( bday " A )  e. 
_V )
31, 2mpan 652 . . . 4  |-  ( A  e.  V  ->  ( bday " A )  e. 
_V )
4 uniexg 4665 . . . 4  |-  ( (
bday " A )  e. 
_V  ->  U. ( bday " A
)  e.  _V )
53, 4syl 16 . . 3  |-  ( A  e.  V  ->  U. ( bday " A )  e. 
_V )
6 imassrn 5175 . . . . 5  |-  ( bday " A )  C_  ran  bday
7 bdayrn 25545 . . . . 5  |-  ran  bday  =  On
86, 7sseqtri 3340 . . . 4  |-  ( bday " A )  C_  On
9 ssorduni 4725 . . . 4  |-  ( (
bday " A )  C_  On  ->  Ord  U. ( bday " A ) )
108, 9ax-mp 8 . . 3  |-  Ord  U. ( bday " A )
115, 10jctil 524 . 2  |-  ( A  e.  V  ->  ( Ord  U. ( bday " A
)  /\  U. ( bday " A )  e. 
_V ) )
12 elon2 4552 . . 3  |-  ( U. ( bday " A )  e.  On  <->  ( Ord  U. ( bday " A
)  /\  U. ( bday " A )  e. 
_V ) )
13 sucelon 4756 . . 3  |-  ( U. ( bday " A )  e.  On  <->  suc  U. ( bday " A )  e.  On )
1412, 13bitr3i 243 . 2  |-  ( ( Ord  U. ( bday " A )  /\  U. ( bday " A )  e.  _V )  <->  suc  U. ( bday " A )  e.  On )
1511, 14sylib 189 1  |-  ( A  e.  V  ->  suc  U. ( bday " A
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721   _Vcvv 2916    C_ wss 3280   U.cuni 3975   Ord word 4540   Oncon0 4541   suc csuc 4543   ran crn 4838   "cima 4840   Fun wfun 5407   bdaycbday 25510
This theorem is referenced by:  nobndlem2  25561  nobndlem8  25567  nofulllem4  25573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-1o 6683  df-no 25511  df-bday 25513
  Copyright terms: Public domain W3C validator