MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunifi Structured version   Unicode version

Theorem nnunifi 7771
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
nnunifi  |-  ( ( S  C_  om  /\  S  e.  Fin )  ->  U. S  e.  om )

Proof of Theorem nnunifi
StepHypRef Expression
1 unieq 4253 . . . 4  |-  ( S  =  (/)  ->  U. S  =  U. (/) )
2 uni0 4272 . . . . 5  |-  U. (/)  =  (/)
3 peano1 6703 . . . . 5  |-  (/)  e.  om
42, 3eqeltri 2551 . . . 4  |-  U. (/)  e.  om
51, 4syl6eqel 2563 . . 3  |-  ( S  =  (/)  ->  U. S  e.  om )
65adantl 466 . 2  |-  ( ( ( S  C_  om  /\  S  e.  Fin )  /\  S  =  (/) )  ->  U. S  e.  om )
7 simpll 753 . . 3  |-  ( ( ( S  C_  om  /\  S  e.  Fin )  /\  S  =/=  (/) )  ->  S  C_  om )
8 omsson 6688 . . . . 5  |-  om  C_  On
97, 8syl6ss 3516 . . . 4  |-  ( ( ( S  C_  om  /\  S  e.  Fin )  /\  S  =/=  (/) )  ->  S  C_  On )
10 simplr 754 . . . 4  |-  ( ( ( S  C_  om  /\  S  e.  Fin )  /\  S  =/=  (/) )  ->  S  e.  Fin )
11 simpr 461 . . . 4  |-  ( ( ( S  C_  om  /\  S  e.  Fin )  /\  S  =/=  (/) )  ->  S  =/=  (/) )
12 ordunifi 7770 . . . 4  |-  ( ( S  C_  On  /\  S  e.  Fin  /\  S  =/=  (/) )  ->  U. S  e.  S )
139, 10, 11, 12syl3anc 1228 . . 3  |-  ( ( ( S  C_  om  /\  S  e.  Fin )  /\  S  =/=  (/) )  ->  U. S  e.  S
)
147, 13sseldd 3505 . 2  |-  ( ( ( S  C_  om  /\  S  e.  Fin )  /\  S  =/=  (/) )  ->  U. S  e.  om )
156, 14pm2.61dane 2785 1  |-  ( ( S  C_  om  /\  S  e.  Fin )  ->  U. S  e.  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    C_ wss 3476   (/)c0 3785   U.cuni 4245   Oncon0 4878   omcom 6684   Fincfn 7516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-1o 7130  df-er 7311  df-en 7517  df-fin 7520
This theorem is referenced by:  ackbij1lem16  8615  isf32lem5  8737
  Copyright terms: Public domain W3C validator