MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Structured version   Unicode version

Theorem nnunb 10567
Description: The set of positive integers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Distinct variable group:    x, y

Proof of Theorem nnunb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pm3.24 877 . . . 4  |-  -.  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y )
2 peano2rem 9667 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
3 ltm1 10161 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  <  x )
4 ovex 6111 . . . . . . . . . . . . 13  |-  ( x  -  1 )  e. 
_V
5 eleq1 2498 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
y  e.  RR  <->  ( x  -  1 )  e.  RR ) )
6 breq1 4290 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  x  <->  ( x  -  1 )  < 
x ) )
7 breq1 4290 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  z  <->  ( x  -  1 )  < 
z ) )
87rexbidv 2731 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( E. z  e.  NN  y  <  z  <->  E. z  e.  NN  ( x  - 
1 )  <  z
) )
96, 8imbi12d 320 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( y  <  x  ->  E. z  e.  NN  y  <  z )  <->  ( (
x  -  1 )  <  x  ->  E. z  e.  NN  ( x  - 
1 )  <  z
) ) )
105, 9imbi12d 320 . . . . . . . . . . . . 13  |-  ( y  =  ( x  - 
1 )  ->  (
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) )  <-> 
( ( x  - 
1 )  e.  RR  ->  ( ( x  - 
1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) ) )
114, 10spcv 3058 . . . . . . . . . . . 12  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( ( x  -  1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) )
123, 11syl7 68 . . . . . . . . . . 11  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
132, 12syl5 32 . . . . . . . . . 10  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
1413pm2.43d 48 . . . . . . . . 9  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) )
15 df-rex 2716 . . . . . . . . 9  |-  ( E. z  e.  NN  (
x  -  1 )  <  z  <->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) )
1614, 15syl6ib 226 . . . . . . . 8  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z ) ) )
1716com12 31 . . . . . . 7  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) ) )
18 nnre 10321 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  RR )
19 1re 9377 . . . . . . . . . . . 12  |-  1  e.  RR
20 ltsubadd 9801 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  z  e.  RR )  ->  (
( x  -  1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2119, 20mp3an2 1302 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2218, 21sylan2 474 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  z  e.  NN )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2322pm5.32da 641 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( z  e.  NN  /\  ( x  -  1 )  <  z )  <-> 
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
2423exbidv 1680 . . . . . . . 8  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  <->  E. z
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
25 peano2nn 10326 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
z  +  1 )  e.  NN )
26 ovex 6111 . . . . . . . . . . 11  |-  ( z  +  1 )  e. 
_V
27 eleq1 2498 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
y  e.  NN  <->  ( z  +  1 )  e.  NN ) )
28 breq2 4291 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
x  <  y  <->  x  <  ( z  +  1 ) ) )
2927, 28anbi12d 710 . . . . . . . . . . 11  |-  ( y  =  ( z  +  1 )  ->  (
( y  e.  NN  /\  x  <  y )  <-> 
( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
3026, 29spcev 3059 . . . . . . . . . 10  |-  ( ( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3125, 30sylan 471 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3231exlimiv 1688 . . . . . . . 8  |-  ( E. z ( z  e.  NN  /\  x  < 
( z  +  1 ) )  ->  E. y
( y  e.  NN  /\  x  <  y ) )
3324, 32syl6bi 228 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
3417, 33syld 44 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
35 df-ral 2715 . . . . . 6  |-  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z )  <->  A. y
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
36 df-ral 2715 . . . . . . . 8  |-  ( A. y  e.  NN  -.  x  <  y  <->  A. y
( y  e.  NN  ->  -.  x  <  y
) )
37 alinexa 1630 . . . . . . . 8  |-  ( A. y ( y  e.  NN  ->  -.  x  <  y )  <->  -.  E. y
( y  e.  NN  /\  x  <  y ) )
3836, 37bitr2i 250 . . . . . . 7  |-  ( -. 
E. y ( y  e.  NN  /\  x  <  y )  <->  A. y  e.  NN  -.  x  < 
y )
3938con1bii 331 . . . . . 6  |-  ( -. 
A. y  e.  NN  -.  x  <  y  <->  E. y
( y  e.  NN  /\  x  <  y ) )
4034, 35, 393imtr4g 270 . . . . 5  |-  ( x  e.  RR  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  NN  y  <  z )  ->  -.  A. y  e.  NN  -.  x  <  y ) )
4140anim2d 565 . . . 4  |-  ( x  e.  RR  ->  (
( A. y  e.  NN  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  NN  y  <  z
) )  ->  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y ) ) )
421, 41mtoi 178 . . 3  |-  ( x  e.  RR  ->  -.  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
4342nrex 2813 . 2  |-  -.  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) )
44 nnssre 10318 . . 3  |-  NN  C_  RR
45 1nn 10325 . . . . 5  |-  1  e.  NN
46 n0i 3637 . . . . 5  |-  ( 1  e.  NN  ->  -.  NN  =  (/) )
4745, 46ax-mp 5 . . . 4  |-  -.  NN  =  (/)
4847neir 2606 . . 3  |-  NN  =/=  (/)
49 sup2 10278 . . 3  |-  ( ( NN  C_  RR  /\  NN  =/=  (/)  /\  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x ) )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5044, 48, 49mp3an12 1304 . 2  |-  ( E. x  e.  RR  A. y  e.  NN  (
y  <  x  \/  y  =  x )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5143, 50mto 176 1  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    C_ wss 3323   (/)c0 3632   class class class wbr 4287  (class class class)co 6086   RRcr 9273   1c1 9275    + caddc 9277    < clt 9410    - cmin 9587   NNcn 10314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315
This theorem is referenced by:  arch  10568
  Copyright terms: Public domain W3C validator