MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Structured version   Unicode version

Theorem nnunb 10708
Description: The set of positive integers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Distinct variable group:    x, y

Proof of Theorem nnunb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pm3.24 880 . . . 4  |-  -.  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y )
2 peano2rem 9799 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
3 ltm1 10299 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  <  x )
4 ovex 6224 . . . . . . . . . . . . 13  |-  ( x  -  1 )  e. 
_V
5 eleq1 2454 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
y  e.  RR  <->  ( x  -  1 )  e.  RR ) )
6 breq1 4370 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  x  <->  ( x  -  1 )  < 
x ) )
7 breq1 4370 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  - 
1 )  ->  (
y  <  z  <->  ( x  -  1 )  < 
z ) )
87rexbidv 2893 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( E. z  e.  NN  y  <  z  <->  E. z  e.  NN  ( x  - 
1 )  <  z
) )
96, 8imbi12d 318 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( y  <  x  ->  E. z  e.  NN  y  <  z )  <->  ( (
x  -  1 )  <  x  ->  E. z  e.  NN  ( x  - 
1 )  <  z
) ) )
105, 9imbi12d 318 . . . . . . . . . . . . 13  |-  ( y  =  ( x  - 
1 )  ->  (
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) )  <-> 
( ( x  - 
1 )  e.  RR  ->  ( ( x  - 
1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) ) )
114, 10spcv 3125 . . . . . . . . . . . 12  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( ( x  -  1 )  <  x  ->  E. z  e.  NN  ( x  -  1
)  <  z )
) )
123, 11syl7 68 . . . . . . . . . . 11  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
( x  -  1 )  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
132, 12syl5 32 . . . . . . . . . 10  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  ( x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) ) )
1413pm2.43d 48 . . . . . . . . 9  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z  e.  NN  (
x  -  1 )  <  z ) )
15 df-rex 2738 . . . . . . . . 9  |-  ( E. z  e.  NN  (
x  -  1 )  <  z  <->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) )
1614, 15syl6ib 226 . . . . . . . 8  |-  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  (
x  e.  RR  ->  E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z ) ) )
1716com12 31 . . . . . . 7  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. z
( z  e.  NN  /\  ( x  -  1 )  <  z ) ) )
18 nnre 10459 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  RR )
19 1re 9506 . . . . . . . . . . . 12  |-  1  e.  RR
20 ltsubadd 9940 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  z  e.  RR )  ->  (
( x  -  1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2119, 20mp3an2 1310 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2218, 21sylan2 472 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  z  e.  NN )  ->  ( ( x  - 
1 )  <  z  <->  x  <  ( z  +  1 ) ) )
2322pm5.32da 639 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( z  e.  NN  /\  ( x  -  1 )  <  z )  <-> 
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
2423exbidv 1722 . . . . . . . 8  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  <->  E. z
( z  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
25 peano2nn 10464 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
z  +  1 )  e.  NN )
26 ovex 6224 . . . . . . . . . . 11  |-  ( z  +  1 )  e. 
_V
27 eleq1 2454 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
y  e.  NN  <->  ( z  +  1 )  e.  NN ) )
28 breq2 4371 . . . . . . . . . . . 12  |-  ( y  =  ( z  +  1 )  ->  (
x  <  y  <->  x  <  ( z  +  1 ) ) )
2927, 28anbi12d 708 . . . . . . . . . . 11  |-  ( y  =  ( z  +  1 )  ->  (
( y  e.  NN  /\  x  <  y )  <-> 
( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) ) ) )
3026, 29spcev 3126 . . . . . . . . . 10  |-  ( ( ( z  +  1 )  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3125, 30sylan 469 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  x  <  ( z  +  1 ) )  ->  E. y ( y  e.  NN  /\  x  < 
y ) )
3231exlimiv 1730 . . . . . . . 8  |-  ( E. z ( z  e.  NN  /\  x  < 
( z  +  1 ) )  ->  E. y
( y  e.  NN  /\  x  <  y ) )
3324, 32syl6bi 228 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z ( z  e.  NN  /\  ( x  -  1 )  < 
z )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
3417, 33syld 44 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y ( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z
) )  ->  E. y
( y  e.  NN  /\  x  <  y ) ) )
35 df-ral 2737 . . . . . 6  |-  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z )  <->  A. y
( y  e.  RR  ->  ( y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
36 df-ral 2737 . . . . . . . 8  |-  ( A. y  e.  NN  -.  x  <  y  <->  A. y
( y  e.  NN  ->  -.  x  <  y
) )
37 alinexa 1671 . . . . . . . 8  |-  ( A. y ( y  e.  NN  ->  -.  x  <  y )  <->  -.  E. y
( y  e.  NN  /\  x  <  y ) )
3836, 37bitr2i 250 . . . . . . 7  |-  ( -. 
E. y ( y  e.  NN  /\  x  <  y )  <->  A. y  e.  NN  -.  x  < 
y )
3938con1bii 329 . . . . . 6  |-  ( -. 
A. y  e.  NN  -.  x  <  y  <->  E. y
( y  e.  NN  /\  x  <  y ) )
4034, 35, 393imtr4g 270 . . . . 5  |-  ( x  e.  RR  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  NN  y  <  z )  ->  -.  A. y  e.  NN  -.  x  <  y ) )
4140anim2d 563 . . . 4  |-  ( x  e.  RR  ->  (
( A. y  e.  NN  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  NN  y  <  z
) )  ->  ( A. y  e.  NN  -.  x  <  y  /\  -.  A. y  e.  NN  -.  x  <  y ) ) )
421, 41mtoi 178 . . 3  |-  ( x  e.  RR  ->  -.  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
4342nrex 2837 . 2  |-  -.  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) )
44 nnssre 10456 . . 3  |-  NN  C_  RR
45 1nn 10463 . . . . 5  |-  1  e.  NN
46 n0i 3716 . . . . 5  |-  ( 1  e.  NN  ->  -.  NN  =  (/) )
4745, 46ax-mp 5 . . . 4  |-  -.  NN  =  (/)
4847neir 2582 . . 3  |-  NN  =/=  (/)
49 sup2 10415 . . 3  |-  ( ( NN  C_  RR  /\  NN  =/=  (/)  /\  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x ) )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5044, 48, 49mp3an12 1312 . 2  |-  ( E. x  e.  RR  A. y  e.  NN  (
y  <  x  \/  y  =  x )  ->  E. x  e.  RR  ( A. y  e.  NN  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  NN  y  <  z ) ) )
5143, 50mto 176 1  |-  -.  E. x  e.  RR  A. y  e.  NN  ( y  < 
x  \/  y  =  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367   A.wal 1397    = wceq 1399   E.wex 1620    e. wcel 1826    =/= wne 2577   A.wral 2732   E.wrex 2733    C_ wss 3389   (/)c0 3711   class class class wbr 4367  (class class class)co 6196   RRcr 9402   1c1 9404    + caddc 9406    < clt 9539    - cmin 9718   NNcn 10452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-recs 6960  df-rdg 6994  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453
This theorem is referenced by:  arch  10709
  Copyright terms: Public domain W3C validator