MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrei Structured version   Unicode version

Theorem nnrei 10331
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nnrei  |-  A  e.  RR

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2  |-  A  e.  NN
2 nnre 10329 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
31, 2ax-mp 5 1  |-  A  e.  RR
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1756   RRcr 9281   NNcn 10322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-i2m1 9350  ax-1ne0 9351  ax-rrecex 9354  ax-cnre 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-om 6477  df-recs 6832  df-rdg 6866  df-nn 10323
This theorem is referenced by:  nncni  10332  nnne0i  10356  numlt  10774  numltc  10775  faclbnd4lem1  12069  ef01bndlem  13468  dvdslelem  13577  divalglem6  13602  pockthi  13968  modsubi  14101  prmlem1  14135  prmlem2  14147  strlemor1  14265  strleun  14268  strle1  14269  oppchomfval  14653  oppcbas  14657  rescco  14745  opprlem  16720  sralem  17258  opsrbaslem  17559  zlmlem  17948  znbaslem  17971  tnglem  20226  log2ublem1  22341  log2ublem2  22342  log2ub  22344  bpos1lem  22621  bposlem8  22630  bposlem9  22631  ttgval  23121  ttglem  23122  cchhllem  23133  ballotlem2  26871  ballotlem5  26882  ballotth  26920  jm2.27dlem2  29359  hlhilslem  35586
  Copyright terms: Public domain W3C validator