MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrei Structured version   Unicode version

Theorem nnrei 10545
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1  |-  A  e.  NN
Assertion
Ref Expression
nnrei  |-  A  e.  RR

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2  |-  A  e.  NN
2 nnre 10543 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
31, 2ax-mp 5 1  |-  A  e.  RR
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1767   RRcr 9491   NNcn 10536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-i2m1 9560  ax-1ne0 9561  ax-rrecex 9564  ax-cnre 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-om 6685  df-recs 7042  df-rdg 7076  df-nn 10537
This theorem is referenced by:  nncni  10546  nnne0i  10570  numlt  10995  numltc  10996  faclbnd4lem1  12339  ef01bndlem  13780  dvdslelem  13889  divalglem6  13915  pockthi  14284  modsubi  14417  prmlem1  14451  prmlem2  14463  strlemor1  14582  strleun  14585  strle1  14586  oppchomfval  14970  oppcbas  14974  rescco  15062  opprlem  17078  sralem  17623  opsrbaslem  17941  zlmlem  18349  znbaslem  18372  tnglem  20917  log2ublem1  23033  log2ublem2  23034  log2ub  23036  bpos1lem  23313  bposlem8  23322  bposlem9  23323  ttgval  23882  ttglem  23883  cchhllem  23894  ballotlem2  28095  ballotlem5  28106  ballotth  28144  jm2.27dlem2  30584  uhgrepe  31873  hlhilslem  36756
  Copyright terms: Public domain W3C validator