MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrecl Unicode version

Theorem nnrecl 9842
Description: There exists a natural number whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
Assertion
Ref Expression
nnrecl  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Distinct variable group:    A, n

Proof of Theorem nnrecl
StepHypRef Expression
1 simpl 445 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
2 gt0ne0 9119 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
31, 2rereccld 9467 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
4 arch 9841 . . 3  |-  ( ( 1  /  A )  e.  RR  ->  E. n  e.  NN  ( 1  /  A )  <  n
)
53, 4syl 17 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  A
)  <  n )
6 recgt0 9480 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
73, 6jca 520 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) ) )
8 nnre 9633 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  RR )
9 nngt0 9655 . . . . . 6  |-  ( n  e.  NN  ->  0  <  n )
108, 9jca 520 . . . . 5  |-  ( n  e.  NN  ->  (
n  e.  RR  /\  0  <  n ) )
11 ltrec 9517 . . . . 5  |-  ( ( ( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( 1  /  A )  <  n  <->  ( 1  /  n )  <  ( 1  / 
( 1  /  A
) ) ) )
127, 10, 11syl2an 465 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  (
1  /  ( 1  /  A ) ) ) )
13 recn 8707 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
1413adantr 453 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
1514, 2recrecd 9413 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  /  A ) )  =  A )
1615breq2d 3932 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  n )  <  (
1  /  ( 1  /  A ) )  <-> 
( 1  /  n
)  <  A )
)
1716adantr 453 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  n )  < 
( 1  /  (
1  /  A ) )  <->  ( 1  /  n )  <  A
) )
1812, 17bitrd 246 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  A
) )
1918rexbidva 2524 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( E. n  e.  NN  ( 1  /  A )  <  n  <->  E. n  e.  NN  (
1  /  n )  <  A ) )
205, 19mpbid 203 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   E.wrex 2510   class class class wbr 3920  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    < clt 8747    / cdiv 9303   NNcn 9626
This theorem is referenced by:  qbtwnre  10404  met1stc  17899  met2ndci  17900  bcthlem4  18581  ismbf3d  18841  itg2seq  18929  itg2gt0  18947
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627
  Copyright terms: Public domain W3C validator