MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrecl Unicode version

Theorem nnrecl 10175
Description: There exists a natural number whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
Assertion
Ref Expression
nnrecl  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Distinct variable group:    A, n

Proof of Theorem nnrecl
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
2 gt0ne0 9449 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
31, 2rereccld 9797 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
4 arch 10174 . . 3  |-  ( ( 1  /  A )  e.  RR  ->  E. n  e.  NN  ( 1  /  A )  <  n
)
53, 4syl 16 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  A
)  <  n )
6 recgt0 9810 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
73, 6jca 519 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) ) )
8 nnre 9963 . . . . . 6  |-  ( n  e.  NN  ->  n  e.  RR )
9 nngt0 9985 . . . . . 6  |-  ( n  e.  NN  ->  0  <  n )
108, 9jca 519 . . . . 5  |-  ( n  e.  NN  ->  (
n  e.  RR  /\  0  <  n ) )
11 ltrec 9847 . . . . 5  |-  ( ( ( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( 1  /  A )  <  n  <->  ( 1  /  n )  <  ( 1  / 
( 1  /  A
) ) ) )
127, 10, 11syl2an 464 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  (
1  /  ( 1  /  A ) ) ) )
13 recn 9036 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
1413adantr 452 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  CC )
1514, 2recrecd 9743 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  /  A ) )  =  A )
1615breq2d 4184 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  n )  <  (
1  /  ( 1  /  A ) )  <-> 
( 1  /  n
)  <  A )
)
1716adantr 452 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  n )  < 
( 1  /  (
1  /  A ) )  <->  ( 1  /  n )  <  A
) )
1812, 17bitrd 245 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  n  e.  NN )  ->  ( ( 1  /  A )  < 
n  <->  ( 1  /  n )  <  A
) )
1918rexbidva 2683 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( E. n  e.  NN  ( 1  /  A )  <  n  <->  E. n  e.  NN  (
1  /  n )  <  A ) )
205, 19mpbid 202 1  |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n
)  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721   E.wrex 2667   class class class wbr 4172  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    < clt 9076    / cdiv 9633   NNcn 9956
This theorem is referenced by:  qbtwnre  10741  met1stc  18504  met2ndci  18505  bcthlem4  19233  ismbf3d  19499  itg2seq  19587  itg2gt0  19605
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957
  Copyright terms: Public domain W3C validator