MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmword Structured version   Unicode version

Theorem nnmword 7274
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmword  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )

Proof of Theorem nnmword
StepHypRef Expression
1 iba 503 . . . 4  |-  ( (/)  e.  C  ->  ( B  e.  A  <->  ( B  e.  A  /\  (/)  e.  C
) ) )
2 nnmord 7273 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
323com12 1195 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
41, 3sylan9bbr 700 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  <->  ( C  .o  B )  e.  ( C  .o  A ) ) )
54notbid 294 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( -.  B  e.  A  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
6 simpl1 994 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  om )
7 nnon 6679 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
86, 7syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  On )
9 simpl2 995 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  om )
10 nnon 6679 . . . 4  |-  ( B  e.  om  ->  B  e.  On )
119, 10syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  On )
12 ontri1 4907 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
138, 11, 12syl2anc 661 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  -.  B  e.  A
) )
14 simpl3 996 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  C  e.  om )
15 nnmcl 7253 . . . . 5  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  e.  om )
1614, 6, 15syl2anc 661 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  om )
17 nnon 6679 . . . 4  |-  ( ( C  .o  A )  e.  om  ->  ( C  .o  A )  e.  On )
1816, 17syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  On )
19 nnmcl 7253 . . . . 5  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  e.  om )
2014, 9, 19syl2anc 661 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  om )
21 nnon 6679 . . . 4  |-  ( ( C  .o  B )  e.  om  ->  ( C  .o  B )  e.  On )
2220, 21syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  On )
23 ontri1 4907 . . 3  |-  ( ( ( C  .o  A
)  e.  On  /\  ( C  .o  B
)  e.  On )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
2418, 22, 23syl2anc 661 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
255, 13, 243bitr4d 285 1  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    e. wcel 1762    C_ wss 3471   (/)c0 3780   Oncon0 4873  (class class class)co 6277   omcom 6673    .o comu 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-oadd 7126  df-omul 7127
This theorem is referenced by:  nnmcan  7275  nnmwordi  7276
  Copyright terms: Public domain W3C validator