MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmword Unicode version

Theorem nnmword 6835
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmword  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )

Proof of Theorem nnmword
StepHypRef Expression
1 iba 490 . . . 4  |-  ( (/)  e.  C  ->  ( B  e.  A  <->  ( B  e.  A  /\  (/)  e.  C
) ) )
2 nnmord 6834 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
323com12 1157 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( B  e.  A  /\  (/)  e.  C )  <-> 
( C  .o  B
)  e.  ( C  .o  A ) ) )
41, 3sylan9bbr 682 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  <->  ( C  .o  B )  e.  ( C  .o  A ) ) )
54notbid 286 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( -.  B  e.  A  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
6 simpl1 960 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  om )
7 nnon 4810 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
86, 7syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  On )
9 simpl2 961 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  om )
10 nnon 4810 . . . 4  |-  ( B  e.  om  ->  B  e.  On )
119, 10syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  On )
12 ontri1 4575 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
138, 11, 12syl2anc 643 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  -.  B  e.  A
) )
14 simpl3 962 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  C  e.  om )
15 nnmcl 6814 . . . . 5  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  e.  om )
1614, 6, 15syl2anc 643 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  om )
17 nnon 4810 . . . 4  |-  ( ( C  .o  A )  e.  om  ->  ( C  .o  A )  e.  On )
1816, 17syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  On )
19 nnmcl 6814 . . . . 5  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  e.  om )
2014, 9, 19syl2anc 643 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  om )
21 nnon 4810 . . . 4  |-  ( ( C  .o  B )  e.  om  ->  ( C  .o  B )  e.  On )
2220, 21syl 16 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  On )
23 ontri1 4575 . . 3  |-  ( ( ( C  .o  A
)  e.  On  /\  ( C  .o  B
)  e.  On )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
2418, 22, 23syl2anc 643 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  -.  ( C  .o  B )  e.  ( C  .o  A ) ) )
255, 13, 243bitr4d 277 1  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721    C_ wss 3280   (/)c0 3588   Oncon0 4541   omcom 4804  (class class class)co 6040    .o comu 6681
This theorem is referenced by:  nnmcan  6836  nnmwordi  6837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-oadd 6687  df-omul 6688
  Copyright terms: Public domain W3C validator