MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulcli Structured version   Unicode version

Theorem nnmulcli 10567
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nnmulcli.1  |-  A  e.  NN
nnmulcli.2  |-  B  e.  NN
Assertion
Ref Expression
nnmulcli  |-  ( A  x.  B )  e.  NN

Proof of Theorem nnmulcli
StepHypRef Expression
1 nnmulcli.1 . 2  |-  A  e.  NN
2 nnmulcli.2 . 2  |-  B  e.  NN
3 nnmulcl 10566 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
41, 2, 3mp2an 672 1  |-  ( A  x.  B )  e.  NN
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1804  (class class class)co 6281    x. cmul 9500   NNcn 10543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rrecex 9567  ax-cnre 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-om 6686  df-recs 7044  df-rdg 7078  df-nn 10544
This theorem is referenced by:  numnncl2  11003  ef01bndlem  13901  pockthi  14407  dec5nprm  14534  dec2nprm  14535  log2ublem1  23255  log2ublem2  23256  log2ub  23258  bclbnd  23533  bposlem8  23544  lgsdir2lem5  23580
  Copyright terms: Public domain W3C validator