MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcl Structured version   Unicode version

Theorem nnmcl 7253
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )

Proof of Theorem nnmcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6278 . . . . 5  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
21eleq1d 2523 . . . 4  |-  ( x  =  B  ->  (
( A  .o  x
)  e.  om  <->  ( A  .o  B )  e.  om ) )
32imbi2d 314 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  .o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  .o  B )  e.  om ) ) )
4 oveq2 6278 . . . . 5  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
54eleq1d 2523 . . . 4  |-  ( x  =  (/)  ->  ( ( A  .o  x )  e.  om  <->  ( A  .o  (/) )  e.  om ) )
6 oveq2 6278 . . . . 5  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
76eleq1d 2523 . . . 4  |-  ( x  =  y  ->  (
( A  .o  x
)  e.  om  <->  ( A  .o  y )  e.  om ) )
8 oveq2 6278 . . . . 5  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
98eleq1d 2523 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  e.  om  <->  ( A  .o  suc  y
)  e.  om )
)
10 nnm0 7246 . . . . 5  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
11 peano1 6692 . . . . 5  |-  (/)  e.  om
1210, 11syl6eqel 2550 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  e.  om )
13 nnacl 7252 . . . . . . . 8  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( A  .o  y )  +o  A
)  e.  om )
1413expcom 433 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  .o  y
)  e.  om  ->  ( ( A  .o  y
)  +o  A )  e.  om ) )
1514adantr 463 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  e.  om  ->  ( ( A  .o  y )  +o  A
)  e.  om )
)
16 nnmsuc 7248 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
1716eleq1d 2523 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  e.  om  <->  ( ( A  .o  y
)  +o  A )  e.  om ) )
1815, 17sylibrd 234 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  e.  om  ->  ( A  .o  suc  y )  e.  om ) )
1918expcom 433 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  .o  y
)  e.  om  ->  ( A  .o  suc  y
)  e.  om )
) )
205, 7, 9, 12, 19finds2 6701 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  .o  x )  e.  om ) )
213, 20vtoclga 3170 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  .o  B )  e.  om ) )
2221impcom 428 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   (/)c0 3783   suc csuc 4869  (class class class)co 6270   omcom 6673    +o coa 7119    .o comu 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-oadd 7126  df-omul 7127
This theorem is referenced by:  nnecl  7254  nnmcli  7256  nndi  7264  nnmass  7265  nnmsucr  7266  nnmordi  7272  nnmord  7273  nnmword  7274  omabslem  7287  nnneo  7292  nneob  7293  fin1a2lem4  8774  mulclpi  9260
  Copyright terms: Public domain W3C validator