MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmass Structured version   Unicode version

Theorem nnmass 7310
Description: Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmass  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )

Proof of Theorem nnmass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6286 . . . . . 6  |-  ( x  =  C  ->  (
( A  .o  B
)  .o  x )  =  ( ( A  .o  B )  .o  C ) )
2 oveq2 6286 . . . . . . 7  |-  ( x  =  C  ->  ( B  .o  x )  =  ( B  .o  C
) )
32oveq2d 6294 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  C ) ) )
41, 3eqeq12d 2424 . . . . 5  |-  ( x  =  C  ->  (
( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) )  <->  ( ( A  .o  B )  .o  C )  =  ( A  .o  ( B  .o  C ) ) ) )
54imbi2d 314 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) ) ) )
6 oveq2 6286 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  .o  B )  .o  x )  =  ( ( A  .o  B )  .o  (/) ) )
7 oveq2 6286 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
87oveq2d 6294 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  (/) ) ) )
96, 8eqeq12d 2424 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( A  .o  B
)  .o  x )  =  ( A  .o  ( B  .o  x
) )  <->  ( ( A  .o  B )  .o  (/) )  =  ( A  .o  ( B  .o  (/) ) ) ) )
10 oveq2 6286 . . . . . 6  |-  ( x  =  y  ->  (
( A  .o  B
)  .o  x )  =  ( ( A  .o  B )  .o  y ) )
11 oveq2 6286 . . . . . . 7  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
1211oveq2d 6294 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  y ) ) )
1310, 12eqeq12d 2424 . . . . 5  |-  ( x  =  y  ->  (
( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) )  <->  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) ) ) )
14 oveq2 6286 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  .o  B )  .o  x
)  =  ( ( A  .o  B )  .o  suc  y ) )
15 oveq2 6286 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1615oveq2d 6294 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  suc  y
) ) )
1714, 16eqeq12d 2424 . . . . 5  |-  ( x  =  suc  y  -> 
( ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) )  <-> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) )
18 nnmcl 7298 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
19 nnm0 7291 . . . . . . 7  |-  ( ( A  .o  B )  e.  om  ->  (
( A  .o  B
)  .o  (/) )  =  (/) )
2018, 19syl 17 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  (/) )  =  (/) )
21 nnm0 7291 . . . . . . . 8  |-  ( B  e.  om  ->  ( B  .o  (/) )  =  (/) )
2221oveq2d 6294 . . . . . . 7  |-  ( B  e.  om  ->  ( A  .o  ( B  .o  (/) ) )  =  ( A  .o  (/) ) )
23 nnm0 7291 . . . . . . 7  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
2422, 23sylan9eqr 2465 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  .o  (/) ) )  =  (/) )
2520, 24eqtr4d 2446 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  (/) )  =  ( A  .o  ( B  .o  (/) ) ) )
26 oveq1 6285 . . . . . . . . 9  |-  ( ( ( A  .o  B
)  .o  y )  =  ( A  .o  ( B  .o  y
) )  ->  (
( ( A  .o  B )  .o  y
)  +o  ( A  .o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) )
27 nnmsuc 7293 . . . . . . . . . . 11  |-  ( ( ( A  .o  B
)  e.  om  /\  y  e.  om )  ->  ( ( A  .o  B )  .o  suc  y )  =  ( ( ( A  .o  B )  .o  y
)  +o  ( A  .o  B ) ) )
2818, 27stoic3 1630 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  .o  suc  y
)  =  ( ( ( A  .o  B
)  .o  y )  +o  ( A  .o  B ) ) )
29 nnmsuc 7293 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
30293adant1 1015 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y )  +o  B ) )
3130oveq2d 6294 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  .o  suc  y ) )  =  ( A  .o  (
( B  .o  y
)  +o  B ) ) )
32 nnmcl 7298 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  .o  y
)  e.  om )
33 nndi 7309 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  om  /\  ( B  .o  y
)  e.  om  /\  B  e.  om )  ->  ( A  .o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) )
3432, 33syl3an2 1264 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )  /\  B  e.  om )  ->  ( A  .o  ( ( B  .o  y )  +o  B
) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) )
35343exp 1196 . . . . . . . . . . . . . . 15  |-  ( A  e.  om  ->  (
( B  e.  om  /\  y  e.  om )  ->  ( B  e.  om  ->  ( A  .o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) ) ) )
3635expd 434 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( B  e.  om  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) ) )
3736com34 83 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) ) )
3837pm2.43d 47 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) )
39383imp 1191 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y
) )  +o  ( A  .o  B ) ) )
4031, 39eqtrd 2443 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  .o  suc  y ) )  =  ( ( A  .o  ( B  .o  y
) )  +o  ( A  .o  B ) ) )
4128, 40eqeq12d 2424 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) )  <->  ( ( ( A  .o  B )  .o  y )  +o  ( A  .o  B
) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) ) )
4226, 41syl5ibr 221 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) )
43423exp 1196 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) ) )
4443com3r 79 . . . . . 6  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( ( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) ) )
4544impd 429 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) )  ->  ( ( A  .o  B )  .o 
suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) )
469, 13, 17, 25, 45finds2 6712 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) ) ) )
475, 46vtoclga 3123 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  .o  C
)  =  ( A  .o  ( B  .o  C ) ) ) )
4847expdcom 437 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  ( ( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) ) ) )
49483imp 1191 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   (/)c0 3738   suc csuc 5412  (class class class)co 6278   omcom 6683    +o coa 7164    .o comu 7165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-oadd 7171  df-omul 7172
This theorem is referenced by:  mulasspi  9305
  Copyright terms: Public domain W3C validator