Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nninfnub Structured version   Unicode version

Theorem nninfnub 28818
Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nninfnub  |-  ( ( A  C_  NN  /\  -.  A  e.  Fin  /\  B  e.  NN )  ->  { x  e.  A  |  B  <  x }  =/=  (/) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nninfnub
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eq0 3763 . . . . . 6  |-  ( { x  e.  A  |  B  <  x }  =  (/)  <->  A. y  -.  y  e. 
{ x  e.  A  |  B  <  x }
)
2 breq2 4407 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( B  <  x  <->  B  <  y ) )
32elrab 3224 . . . . . . . . . . . 12  |-  ( y  e.  { x  e.  A  |  B  < 
x }  <->  ( y  e.  A  /\  B  < 
y ) )
43notbii 296 . . . . . . . . . . 11  |-  ( -.  y  e.  { x  e.  A  |  B  <  x }  <->  -.  (
y  e.  A  /\  B  <  y ) )
5 imnan 422 . . . . . . . . . . 11  |-  ( ( y  e.  A  ->  -.  B  <  y )  <->  -.  ( y  e.  A  /\  B  <  y ) )
64, 5bitr4i 252 . . . . . . . . . 10  |-  ( -.  y  e.  { x  e.  A  |  B  <  x }  <->  ( y  e.  A  ->  -.  B  <  y ) )
76biimpi 194 . . . . . . . . 9  |-  ( -.  y  e.  { x  e.  A  |  B  <  x }  ->  (
y  e.  A  ->  -.  B  <  y ) )
87alimi 1605 . . . . . . . 8  |-  ( A. y  -.  y  e.  {
x  e.  A  |  B  <  x }  ->  A. y ( y  e.  A  ->  -.  B  <  y ) )
9 df-ral 2804 . . . . . . . 8  |-  ( A. y  e.  A  -.  B  <  y  <->  A. y
( y  e.  A  ->  -.  B  <  y
) )
108, 9sylibr 212 . . . . . . 7  |-  ( A. y  -.  y  e.  {
x  e.  A  |  B  <  x }  ->  A. y  e.  A  -.  B  <  y )
11 ssel2 3462 . . . . . . . . . . . 12  |-  ( ( A  C_  NN  /\  y  e.  A )  ->  y  e.  NN )
1211nnred 10452 . . . . . . . . . . 11  |-  ( ( A  C_  NN  /\  y  e.  A )  ->  y  e.  RR )
1312adantlr 714 . . . . . . . . . 10  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  ->  y  e.  RR )
14 nnre 10444 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  RR )
1514ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  ->  B  e.  RR )
16 lenlt 9568 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  B  e.  RR )  ->  ( y  <_  B  <->  -.  B  <  y ) )
1716biimprd 223 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  B  e.  RR )  ->  ( -.  B  < 
y  ->  y  <_  B ) )
1813, 15, 17syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  ->  ( -.  B  <  y  ->  y  <_  B ) )
1918ralimdva 2832 . . . . . . . 8  |-  ( ( A  C_  NN  /\  B  e.  NN )  ->  ( A. y  e.  A  -.  B  <  y  ->  A. y  e.  A  y  <_  B ) )
20 fzfi 11915 . . . . . . . . . 10  |-  ( 0 ... B )  e. 
Fin
2111nnnn0d 10751 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  C_  NN  /\  y  e.  A )  ->  y  e.  NN0 )
2221adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  ->  y  e.  NN0 )
2322adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  /\  y  <_  B )  ->  y  e.  NN0 )
24 nnnn0 10701 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  NN  ->  B  e.  NN0 )
2524ad3antlr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  /\  y  <_  B )  ->  B  e.  NN0 )
26 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  /\  y  <_  B )  ->  y  <_  B )
2723, 25, 263jca 1168 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  /\  y  <_  B )  ->  ( y  e.  NN0  /\  B  e. 
NN0  /\  y  <_  B ) )
2827ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  ->  ( y  <_  B  ->  ( y  e.  NN0  /\  B  e. 
NN0  /\  y  <_  B ) ) )
29 elfz2nn0 11601 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 0 ... B )  <->  ( y  e.  NN0  /\  B  e. 
NN0  /\  y  <_  B ) )
3028, 29syl6ibr 227 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  y  e.  A
)  ->  ( y  <_  B  ->  y  e.  ( 0 ... B
) ) )
3130ralimdva 2832 . . . . . . . . . . . 12  |-  ( ( A  C_  NN  /\  B  e.  NN )  ->  ( A. y  e.  A  y  <_  B  ->  A. y  e.  A  y  e.  ( 0 ... B
) ) )
3231imp 429 . . . . . . . . . . 11  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  A. y  e.  A  y  <_  B
)  ->  A. y  e.  A  y  e.  ( 0 ... B
) )
33 dfss3 3457 . . . . . . . . . . 11  |-  ( A 
C_  ( 0 ... B )  <->  A. y  e.  A  y  e.  ( 0 ... B
) )
3432, 33sylibr 212 . . . . . . . . . 10  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  A. y  e.  A  y  <_  B
)  ->  A  C_  (
0 ... B ) )
35 ssfi 7647 . . . . . . . . . 10  |-  ( ( ( 0 ... B
)  e.  Fin  /\  A  C_  ( 0 ... B ) )  ->  A  e.  Fin )
3620, 34, 35sylancr 663 . . . . . . . . 9  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  A. y  e.  A  y  <_  B
)  ->  A  e.  Fin )
3736ex 434 . . . . . . . 8  |-  ( ( A  C_  NN  /\  B  e.  NN )  ->  ( A. y  e.  A  y  <_  B  ->  A  e.  Fin ) )
3819, 37syld 44 . . . . . . 7  |-  ( ( A  C_  NN  /\  B  e.  NN )  ->  ( A. y  e.  A  -.  B  <  y  ->  A  e.  Fin )
)
3910, 38syl5 32 . . . . . 6  |-  ( ( A  C_  NN  /\  B  e.  NN )  ->  ( A. y  -.  y  e.  { x  e.  A  |  B  <  x }  ->  A  e.  Fin )
)
401, 39syl5bi 217 . . . . 5  |-  ( ( A  C_  NN  /\  B  e.  NN )  ->  ( { x  e.  A  |  B  <  x }  =  (/)  ->  A  e.  Fin ) )
4140necon3bd 2664 . . . 4  |-  ( ( A  C_  NN  /\  B  e.  NN )  ->  ( -.  A  e.  Fin  ->  { x  e.  A  |  B  <  x }  =/=  (/) ) )
4241imp 429 . . 3  |-  ( ( ( A  C_  NN  /\  B  e.  NN )  /\  -.  A  e. 
Fin )  ->  { x  e.  A  |  B  <  x }  =/=  (/) )
4342an32s 802 . 2  |-  ( ( ( A  C_  NN  /\ 
-.  A  e.  Fin )  /\  B  e.  NN )  ->  { x  e.  A  |  B  < 
x }  =/=  (/) )
44433impa 1183 1  |-  ( ( A  C_  NN  /\  -.  A  e.  Fin  /\  B  e.  NN )  ->  { x  e.  A  |  B  <  x }  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   {crab 2803    C_ wss 3439   (/)c0 3748   class class class wbr 4403  (class class class)co 6203   Fincfn 7423   RRcr 9396   0cc0 9397    < clt 9533    <_ cle 9534   NNcn 10437   NN0cn0 10694   ...cfz 11558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator