MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnge1 Structured version   Unicode version

Theorem nnge1 10551
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1  |-  ( A  e.  NN  ->  1  <_  A )

Proof of Theorem nnge1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4444 . 2  |-  ( x  =  1  ->  (
1  <_  x  <->  1  <_  1 ) )
2 breq2 4444 . 2  |-  ( x  =  y  ->  (
1  <_  x  <->  1  <_  y ) )
3 breq2 4444 . 2  |-  ( x  =  ( y  +  1 )  ->  (
1  <_  x  <->  1  <_  ( y  +  1 ) ) )
4 breq2 4444 . 2  |-  ( x  =  A  ->  (
1  <_  x  <->  1  <_  A ) )
5 1le1 10166 . 2  |-  1  <_  1
6 nnre 10532 . . 3  |-  ( y  e.  NN  ->  y  e.  RR )
7 recn 9571 . . . . . 6  |-  ( y  e.  RR  ->  y  e.  CC )
87addid1d 9768 . . . . 5  |-  ( y  e.  RR  ->  (
y  +  0 )  =  y )
98breq2d 4452 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  1  <_  y ) )
10 0lt1 10064 . . . . . . . 8  |-  0  <  1
11 0re 9585 . . . . . . . . 9  |-  0  e.  RR
12 1re 9584 . . . . . . . . 9  |-  1  e.  RR
13 axltadd 9647 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  y  e.  RR )  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1411, 12, 13mp3an12 1309 . . . . . . . 8  |-  ( y  e.  RR  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1510, 14mpi 17 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  0 )  <  ( y  +  1 ) )
16 readdcl 9564 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  ( y  +  0 )  e.  RR )
1711, 16mpan2 671 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  0 )  e.  RR )
18 peano2re 9741 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
19 lttr 9650 . . . . . . . . 9  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR  /\  1  e.  RR )  ->  ( ( ( y  +  0 )  < 
( y  +  1 )  /\  ( y  +  1 )  <  1 )  ->  (
y  +  0 )  <  1 ) )
2012, 19mp3an3 1308 . . . . . . . 8  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( ( ( y  +  0 )  <  ( y  +  1 )  /\  (
y  +  1 )  <  1 )  -> 
( y  +  0 )  <  1 ) )
2117, 18, 20syl2anc 661 . . . . . . 7  |-  ( y  e.  RR  ->  (
( ( y  +  0 )  <  (
y  +  1 )  /\  ( y  +  1 )  <  1
)  ->  ( y  +  0 )  <  1 ) )
2215, 21mpand 675 . . . . . 6  |-  ( y  e.  RR  ->  (
( y  +  1 )  <  1  -> 
( y  +  0 )  <  1 ) )
2322con3d 133 . . . . 5  |-  ( y  e.  RR  ->  ( -.  ( y  +  0 )  <  1  ->  -.  ( y  +  1 )  <  1 ) )
24 lenlt 9652 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  0 )  e.  RR )  ->  ( 1  <_ 
( y  +  0 )  <->  -.  ( y  +  0 )  <  1 ) )
2512, 17, 24sylancr 663 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  -.  (
y  +  0 )  <  1 ) )
26 lenlt 9652 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( 1  <_ 
( y  +  1 )  <->  -.  ( y  +  1 )  <  1 ) )
2712, 18, 26sylancr 663 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  1 )  <->  -.  (
y  +  1 )  <  1 ) )
2823, 25, 273imtr4d 268 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  -> 
1  <_  ( y  +  1 ) ) )
299, 28sylbird 235 . . 3  |-  ( y  e.  RR  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
306, 29syl 16 . 2  |-  ( y  e.  NN  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
311, 2, 3, 4, 5, 30nnind 10543 1  |-  ( A  e.  NN  ->  1  <_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1762   class class class wbr 4440  (class class class)co 6275   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618   NNcn 10525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526
This theorem is referenced by:  nngt1ne1  10552  nnle1eq1  10553  nngt0  10554  nnnlt1  10555  nnrecgt0  10562  nnge1d  10567  elnnnn0c  10830  elnnz1  10879  zltp1le  10901  elfz1b  11737  fzo1fzo0n0  11821  elfzom1elp1fzo  11840  fzo0sn0fzo1  11859  nnlesq  12226  digit1  12255  faclbnd  12323  faclbnd3  12325  faclbnd4lem1  12326  faclbnd4lem4  12329  fstwrdne0  12533  swrdn0  12605  swrdtrcfv  12618  swrdccatwrd  12643  divalglem1  13900  isprm3  14074  pockthg  14272  infpn2  14279  chfacfpmmulgsum2  19126  dscmet  20821  ovolunlem1a  21635  vitali  21750  plyeq0lem  22335  logtayllem  22761  leibpi  22994  vmalelog  23201  chtublem  23207  logfaclbnd  23218  bposlem1  23280  dchrisum0lem1  23422  logdivbnd  23462  pntlemn  23506  ostth2lem3  23541  clwwisshclwwlem  24468  clwlkfclwwlk  24506  nexple  27495  eulerpartlems  27789  eulerpartlemb  27797  ballotlem2  27917  plymulx0  27994  fz0n  28435  nndivlub  29350  fzsplit1nn0  30142  pell1qrgaplem  30264  pellqrex  30270  monotoddzzfi  30333  jm2.23  30395  sumnnodd  30991  wallispilem4  31187  wallispilem5  31188  wallispi  31189  wallispi2lem1  31190  stirlinglem5  31197  stirlinglem13  31205  dirkertrigeqlem1  31217  fouriersw  31351
  Copyright terms: Public domain W3C validator