MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnexpcld Structured version   Unicode version

Theorem nnexpcld 12295
Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
nnexpcld.1  |-  ( ph  ->  A  e.  NN )
nnexpcld.2  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
nnexpcld  |-  ( ph  ->  ( A ^ N
)  e.  NN )

Proof of Theorem nnexpcld
StepHypRef Expression
1 nnexpcld.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnexpcld.2 . 2  |-  ( ph  ->  N  e.  NN0 )
3 nnexpcl 12143 . 2  |-  ( ( A  e.  NN  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  NN )
41, 2, 3syl2anc 661 1  |-  ( ph  ->  ( A ^ N
)  e.  NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767  (class class class)co 6282   NNcn 10532   NN0cn0 10791   ^cexp 12130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-seq 12072  df-exp 12131
This theorem is referenced by:  bitsp1  13936  bitsfzolem  13939  bitsfzo  13940  bitsmod  13941  bitsfi  13942  bitscmp  13943  bitsinv1lem  13946  bitsinv1  13947  2ebits  13952  bitsinvp1  13954  sadcaddlem  13962  sadadd3  13966  sadaddlem  13971  sadasslem  13975  bitsres  13978  bitsuz  13979  bitsshft  13980  smumullem  13997  smumul  13998  rplpwr  14049  rppwr  14050  pclem  14217  pcprendvds2  14220  pcpre1  14221  pcpremul  14222  pcdvdsb  14247  pcidlem  14250  pcid  14251  pcdvdstr  14254  pcgcd1  14255  pcprmpw2  14260  pcaddlem  14262  pcadd  14263  pcfaclem  14272  pcfac  14273  pcbc  14274  prmpwdvds  14277  pockthlem  14278  2expltfac  14431  pgpfi1  16411  sylow1lem1  16414  sylow1lem3  16416  sylow1lem4  16417  sylow1lem5  16418  pgpfi  16421  gexexlem  16651  ablfac1lem  16909  ablfac1b  16911  ablfac1eu  16914  aalioulem2  22463  aalioulem5  22466  aaliou3lem9  22480  isppw2  23117  sgmppw  23200  fsumvma2  23217  pclogsum  23218  chpchtsum  23222  logfacubnd  23224  bposlem1  23287  bposlem5  23291  lgseisen  23356  chebbnd1lem1  23382  rpvmasumlem  23400  dchrisum0flblem1  23421  dchrisum0flblem2  23422  ostth2lem2  23547  ostth2lem3  23548  oddpwdc  27933  eulerpartlemgh  27957  jm3.1lem3  30565  stoweidlem25  31325  stoweidlem45  31345  wallispi2lem1  31371
  Copyright terms: Public domain W3C validator