MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnexALT Structured version   Unicode version

Theorem nnexALT 10533
Description: Alternate proof of nnex 10537, more direct. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 3-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nnexALT  |-  NN  e.  _V

Proof of Theorem nnexALT
StepHypRef Expression
1 df-nn 10532 . 2  |-  NN  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 ) " om )
2 rdgfun 7074 . . 3  |-  Fun  rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )
3 omex 8051 . . 3  |-  om  e.  _V
4 funimaexg 5647 . . 3  |-  ( ( Fun  rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  /\  om  e.  _V )  ->  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 ) " om )  e.  _V )
52, 3, 4mp2an 670 . 2  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 ) " om )  e.  _V
61, 5eqeltri 2538 1  |-  NN  e.  _V
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1823   _Vcvv 3106    |-> cmpt 4497   "cima 4991   Fun wfun 5564  (class class class)co 6270   omcom 6673   reccrdg 7067   1c1 9482    + caddc 9484   NNcn 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-recs 7034  df-rdg 7068  df-nn 10532
This theorem is referenced by:  zexALT  10879  qexALT  11198  rpnnen1lem1  11209  rpnnen1lem3  11211  rpnnen1lem4  11212  rpnnen1lem5  11213
  Copyright terms: Public domain W3C validator