MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnesuc Structured version   Unicode version

Theorem nnesuc 7214
Description: Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nnesuc  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )

Proof of Theorem nnesuc
StepHypRef Expression
1 nnon 6644 . 2  |-  ( A  e.  om  ->  A  e.  On )
2 onesuc 7137 . 2  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
31, 2sylan 469 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   Oncon0 4821   suc csuc 4823  (class class class)co 6234   omcom 6638    .o comu 7085    ^o coe 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-recs 6999  df-rdg 7033  df-1o 7087  df-omul 7092  df-oexp 7093
This theorem is referenced by:  nnecl  7219
  Copyright terms: Public domain W3C validator