MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nneneq Structured version   Unicode version

Theorem nneneq 7702
Description: Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
nneneq  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~~  B  <->  A  =  B ) )

Proof of Theorem nneneq
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4440 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
~~  z  <->  (/)  ~~  z
) )
2 eqeq1 2447 . . . . . 6  |-  ( x  =  (/)  ->  ( x  =  z  <->  (/)  =  z ) )
31, 2imbi12d 320 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  ~~  z  ->  x  =  z )  <->  (
(/)  ~~  z  ->  (/)  =  z ) ) )
43ralbidv 2882 . . . 4  |-  ( x  =  (/)  ->  ( A. z  e.  om  (
x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  ( (/)  ~~  z  -> 
(/)  =  z ) ) )
5 breq1 4440 . . . . . 6  |-  ( x  =  y  ->  (
x  ~~  z  <->  y  ~~  z ) )
6 eqeq1 2447 . . . . . 6  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
75, 6imbi12d 320 . . . . 5  |-  ( x  =  y  ->  (
( x  ~~  z  ->  x  =  z )  <-> 
( y  ~~  z  ->  y  =  z ) ) )
87ralbidv 2882 . . . 4  |-  ( x  =  y  ->  ( A. z  e.  om  ( x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) ) )
9 breq1 4440 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  ~~  z  <->  suc  y  ~~  z ) )
10 eqeq1 2447 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  =  z  <->  suc  y  =  z
) )
119, 10imbi12d 320 . . . . 5  |-  ( x  =  suc  y  -> 
( ( x  ~~  z  ->  x  =  z )  <->  ( suc  y  ~~  z  ->  suc  y  =  z ) ) )
1211ralbidv 2882 . . . 4  |-  ( x  =  suc  y  -> 
( A. z  e. 
om  ( x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  ( suc  y  ~~  z  ->  suc  y  =  z ) ) )
13 breq1 4440 . . . . . 6  |-  ( x  =  A  ->  (
x  ~~  z  <->  A  ~~  z ) )
14 eqeq1 2447 . . . . . 6  |-  ( x  =  A  ->  (
x  =  z  <->  A  =  z ) )
1513, 14imbi12d 320 . . . . 5  |-  ( x  =  A  ->  (
( x  ~~  z  ->  x  =  z )  <-> 
( A  ~~  z  ->  A  =  z ) ) )
1615ralbidv 2882 . . . 4  |-  ( x  =  A  ->  ( A. z  e.  om  ( x  ~~  z  ->  x  =  z )  <->  A. z  e.  om  ( A  ~~  z  ->  A  =  z ) ) )
17 ensym 7566 . . . . . 6  |-  ( (/)  ~~  z  ->  z  ~~  (/) )
18 en0 7580 . . . . . . 7  |-  ( z 
~~  (/)  <->  z  =  (/) )
19 eqcom 2452 . . . . . . 7  |-  ( z  =  (/)  <->  (/)  =  z )
2018, 19bitri 249 . . . . . 6  |-  ( z 
~~  (/)  <->  (/)  =  z )
2117, 20sylib 196 . . . . 5  |-  ( (/)  ~~  z  ->  (/)  =  z )
2221rgenw 2804 . . . 4  |-  A. z  e.  om  ( (/)  ~~  z  -> 
(/)  =  z )
23 nn0suc 6709 . . . . . . 7  |-  ( w  e.  om  ->  (
w  =  (/)  \/  E. z  e.  om  w  =  suc  z ) )
24 en0 7580 . . . . . . . . . . . 12  |-  ( suc  y  ~~  (/)  <->  suc  y  =  (/) )
25 breq2 4441 . . . . . . . . . . . . 13  |-  ( w  =  (/)  ->  ( suc  y  ~~  w  <->  suc  y  ~~  (/) ) )
26 eqeq2 2458 . . . . . . . . . . . . 13  |-  ( w  =  (/)  ->  ( suc  y  =  w  <->  suc  y  =  (/) ) )
2725, 26bibi12d 321 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( ( suc  y  ~~  w  <->  suc  y  =  w )  <-> 
( suc  y  ~~  (/)  <->  suc  y  =  (/) ) ) )
2824, 27mpbiri 233 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( suc  y  ~~  w  <->  suc  y  =  w ) )
2928biimpd 207 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) )
3029a1i 11 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( w  =  (/)  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
31 nfv 1694 . . . . . . . . . . 11  |-  F/ z  y  e.  om
32 nfra1 2824 . . . . . . . . . . 11  |-  F/ z A. z  e.  om  ( y  ~~  z  ->  y  =  z )
3331, 32nfan 1914 . . . . . . . . . 10  |-  F/ z ( y  e.  om  /\ 
A. z  e.  om  ( y  ~~  z  ->  y  =  z ) )
34 nfv 1694 . . . . . . . . . 10  |-  F/ z ( suc  y  ~~  w  ->  suc  y  =  w )
35 rsp 2809 . . . . . . . . . . . . . 14  |-  ( A. z  e.  om  (
y  ~~  z  ->  y  =  z )  -> 
( z  e.  om  ->  ( y  ~~  z  ->  y  =  z ) ) )
36 vex 3098 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
37 vex 3098 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
3836, 37phplem4 7701 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( suc  y  ~~  suc  z  ->  y  ~~  z ) )
3938imim1d 75 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( y  ~~  z  ->  y  =  z )  ->  ( suc  y  ~~  suc  z  -> 
y  =  z ) ) )
4039ex 434 . . . . . . . . . . . . . . 15  |-  ( y  e.  om  ->  (
z  e.  om  ->  ( ( y  ~~  z  ->  y  =  z )  ->  ( suc  y  ~~  suc  z  ->  y  =  z ) ) ) )
4140a2d 26 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  (
( z  e.  om  ->  ( y  ~~  z  ->  y  =  z ) )  ->  ( z  e.  om  ->  ( suc  y  ~~  suc  z  -> 
y  =  z ) ) ) )
4235, 41syl5 32 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  ( z  e. 
om  ->  ( suc  y  ~~  suc  z  ->  y  =  z ) ) ) )
4342imp 429 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( z  e. 
om  ->  ( suc  y  ~~  suc  z  ->  y  =  z ) ) )
44 suceq 4933 . . . . . . . . . . . 12  |-  ( y  =  z  ->  suc  y  =  suc  z )
4543, 44syl8 70 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( z  e. 
om  ->  ( suc  y  ~~  suc  z  ->  suc  y  =  suc  z ) ) )
46 breq2 4441 . . . . . . . . . . . . 13  |-  ( w  =  suc  z  -> 
( suc  y  ~~  w 
<->  suc  y  ~~  suc  z ) )
47 eqeq2 2458 . . . . . . . . . . . . 13  |-  ( w  =  suc  z  -> 
( suc  y  =  w 
<->  suc  y  =  suc  z ) )
4846, 47imbi12d 320 . . . . . . . . . . . 12  |-  ( w  =  suc  z  -> 
( ( suc  y  ~~  w  ->  suc  y  =  w )  <->  ( suc  y  ~~  suc  z  ->  suc  y  =  suc  z ) ) )
4948biimprcd 225 . . . . . . . . . . 11  |-  ( ( suc  y  ~~  suc  z  ->  suc  y  =  suc  z )  ->  (
w  =  suc  z  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
5045, 49syl6 33 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( z  e. 
om  ->  ( w  =  suc  z  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) ) ) )
5133, 34, 50rexlimd 2927 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( E. z  e.  om  w  =  suc  z  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
5230, 51jaod 380 . . . . . . . 8  |-  ( ( y  e.  om  /\  A. z  e.  om  (
y  ~~  z  ->  y  =  z ) )  ->  ( ( w  =  (/)  \/  E. z  e.  om  w  =  suc  z )  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) ) )
5352ex 434 . . . . . . 7  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  ( ( w  =  (/)  \/  E. z  e.  om  w  =  suc  z )  ->  ( suc  y  ~~  w  ->  suc  y  =  w
) ) ) )
5423, 53syl7 68 . . . . . 6  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  ( w  e. 
om  ->  ( suc  y  ~~  w  ->  suc  y  =  w ) ) ) )
5554ralrimdv 2859 . . . . 5  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  A. w  e.  om  ( suc  y  ~~  w  ->  suc  y  =  w ) ) )
56 breq2 4441 . . . . . . 7  |-  ( w  =  z  ->  ( suc  y  ~~  w  <->  suc  y  ~~  z ) )
57 eqeq2 2458 . . . . . . 7  |-  ( w  =  z  ->  ( suc  y  =  w  <->  suc  y  =  z ) )
5856, 57imbi12d 320 . . . . . 6  |-  ( w  =  z  ->  (
( suc  y  ~~  w  ->  suc  y  =  w )  <->  ( suc  y  ~~  z  ->  suc  y  =  z )
) )
5958cbvralv 3070 . . . . 5  |-  ( A. w  e.  om  ( suc  y  ~~  w  ->  suc  y  =  w
)  <->  A. z  e.  om  ( suc  y  ~~  z  ->  suc  y  =  z ) )
6055, 59syl6ib 226 . . . 4  |-  ( y  e.  om  ->  ( A. z  e.  om  ( y  ~~  z  ->  y  =  z )  ->  A. z  e.  om  ( suc  y  ~~  z  ->  suc  y  =  z ) ) )
614, 8, 12, 16, 22, 60finds 6711 . . 3  |-  ( A  e.  om  ->  A. z  e.  om  ( A  ~~  z  ->  A  =  z ) )
62 breq2 4441 . . . . 5  |-  ( z  =  B  ->  ( A  ~~  z  <->  A  ~~  B ) )
63 eqeq2 2458 . . . . 5  |-  ( z  =  B  ->  ( A  =  z  <->  A  =  B ) )
6462, 63imbi12d 320 . . . 4  |-  ( z  =  B  ->  (
( A  ~~  z  ->  A  =  z )  <-> 
( A  ~~  B  ->  A  =  B ) ) )
6564rspcv 3192 . . 3  |-  ( B  e.  om  ->  ( A. z  e.  om  ( A  ~~  z  ->  A  =  z )  ->  ( A  ~~  B  ->  A  =  B ) ) )
6661, 65mpan9 469 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~~  B  ->  A  =  B ) )
67 eqeng 7551 . . 3  |-  ( A  e.  om  ->  ( A  =  B  ->  A 
~~  B ) )
6867adantr 465 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  ->  A  ~~  B
) )
6966, 68impbid 191 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~~  B  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794   (/)c0 3770   class class class wbr 4437   suc csuc 4870   omcom 6685    ~~ cen 7515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-om 6686  df-er 7313  df-en 7519
This theorem is referenced by:  php  7703  onomeneq  7709  nnsdomo  7714  fineqvlem  7736  dif1enOLD  7754  dif1en  7755  findcard2  7762  cardnn  8347
  Copyright terms: Public domain W3C validator