MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnel Structured version   Unicode version

Theorem nnel 2799
Description: Negation of negated membership, analogous to nne 2655. (Contributed by Alexander van der Vekens, 18-Jan-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
nnel  |-  ( -.  A  e/  B  <->  A  e.  B )

Proof of Theorem nnel
StepHypRef Expression
1 df-nel 2652 . . 3  |-  ( A  e/  B  <->  -.  A  e.  B )
21bicomi 202 . 2  |-  ( -.  A  e.  B  <->  A  e/  B )
32con1bii 329 1  |-  ( -.  A  e/  B  <->  A  e.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    e. wcel 1823    e/ wnel 2650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-nel 2652
This theorem is referenced by:  raldifsnb  4147  mpt2xopynvov0g  6934  0mnnnnn0  10824  ssnn0fi  12079  rabssnn0fi  12080  hashnfinnn0  12417  nbgranself2  24641  cusgrasizeindslem2  24679  wwlknndef  24942  wwlknfi  24943  clwwlknndef  24978  frgrawopreglem4  25252  lswn0  32626
  Copyright terms: Public domain W3C validator