Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Structured version   Unicode version

Theorem nndivsub 28233
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  -  A )  /  C )  e.  NN ) )

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 10325 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
2 nnre 10325 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
3 nnre 10325 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
4 nngt0 10347 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
53, 4jca 529 . . . . . . . . 9  |-  ( C  e.  NN  ->  ( C  e.  RR  /\  0  <  C ) )
6 ltdiv1 10189 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
71, 2, 5, 6syl3an 1255 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
8 nnsub 10356 . . . . . . . 8  |-  ( ( ( A  /  C
)  e.  NN  /\  ( B  /  C
)  e.  NN )  ->  ( ( A  /  C )  < 
( B  /  C
)  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
97, 8sylan9bb 694 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  ( B  /  C
)  e.  NN ) )  ->  ( A  <  B  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
109biimpd 207 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  ( B  /  C
)  e.  NN ) )  ->  ( A  <  B  ->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
1110exp32 602 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  NN  ->  ( ( B  /  C
)  e.  NN  ->  ( A  <  B  -> 
( ( B  /  C )  -  ( A  /  C ) )  e.  NN ) ) ) )
1211com34 83 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  NN  ->  ( A  <  B  -> 
( ( B  /  C )  e.  NN  ->  ( ( B  /  C )  -  ( A  /  C ) )  e.  NN ) ) ) )
1312imp32 433 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  ->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
14 nnaddcl 10340 . . . . . 6  |-  ( ( ( ( B  /  C )  -  ( A  /  C ) )  e.  NN  /\  ( A  /  C )  e.  NN )  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  e.  NN )
1514expcom 435 . . . . 5  |-  ( ( A  /  C )  e.  NN  ->  (
( ( B  /  C )  -  ( A  /  C ) )  e.  NN  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  e.  NN ) )
16 nnsscn 10323 . . . . . . . . . . 11  |-  NN  C_  CC
17 nnne0 10350 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  =/=  0 )
18 divcl 9996 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
1916, 17, 18nnssi2 28231 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  C  e.  NN )  ->  ( A  /  C
)  e.  CC )
20 divcl 9996 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( B  /  C )  e.  CC )
2116, 17, 20nnssi2 28231 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( B  /  C
)  e.  CC )
2219, 21anim12i 563 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  C  e.  NN )  /\  ( B  e.  NN  /\  C  e.  NN ) )  -> 
( ( A  /  C )  e.  CC  /\  ( B  /  C
)  e.  CC ) )
23223impdir 1269 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  CC  /\  ( B  /  C
)  e.  CC ) )
24 npcan 9615 . . . . . . . . 9  |-  ( ( ( B  /  C
)  e.  CC  /\  ( A  /  C
)  e.  CC )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C
) )  =  ( B  /  C ) )
2524ancoms 450 . . . . . . . 8  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  C
)  e.  CC )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C
) )  =  ( B  /  C ) )
2623, 25syl 16 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  =  ( B  /  C
) )
2726eleq1d 2507 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( B  /  C )  -  ( A  /  C
) )  +  ( A  /  C ) )  e.  NN  <->  ( B  /  C )  e.  NN ) )
2827biimpd 207 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( B  /  C )  -  ( A  /  C
) )  +  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
2915, 28sylan9r 653 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( A  /  C
)  e.  NN )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
3029adantrr 711 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( (
( B  /  C
)  -  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
3113, 30impbid 191 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
32 nncn 10326 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  CC )
33323ad2ant2 1005 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
34 nncn 10326 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
35343ad2ant1 1004 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
36 nncn 10326 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  CC )
3736, 17jca 529 . . . . . 6  |-  ( C  e.  NN  ->  ( C  e.  CC  /\  C  =/=  0 ) )
38373ad2ant3 1006 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
39 divsubdir 10023 . . . . 5  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( B  -  A )  /  C
)  =  ( ( B  /  C )  -  ( A  /  C ) ) )
4033, 35, 38, 39syl3anc 1213 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  -  A
)  /  C )  =  ( ( B  /  C )  -  ( A  /  C
) ) )
4140eleq1d 2507 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( B  -  A )  /  C
)  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
4241adantr 462 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( (
( B  -  A
)  /  C )  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
4331, 42bitr4d 256 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  -  A )  /  C )  e.  NN ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   class class class wbr 4289  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278    + caddc 9281    < clt 9414    - cmin 9591    / cdiv 9989   NNcn 10318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319
This theorem is referenced by:  ee7.2aOLD  28237
  Copyright terms: Public domain W3C validator