MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncand Structured version   Unicode version

Theorem nncand 9745
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
nncand  |-  ( ph  ->  ( A  -  ( A  -  B )
)  =  B )

Proof of Theorem nncand
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 nncan 9659 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )
41, 2, 3syl2anc 661 1  |-  ( ph  ->  ( A  -  ( A  -  B )
)  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756  (class class class)co 6112   CCcc 9301    - cmin 9616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-po 4662  df-so 4663  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-ltxr 9444  df-sub 9618
This theorem is referenced by:  moddiffl  11740  flmod  11743  ccatswrd  12371  o1dif  13128  efaddlem  13399  4sqlem5  14024  mul4sqlem  14035  4sqlem14  14040  coe1tmmul2  17751  znunit  18018  blssps  20021  blss  20022  metdstri  20449  ivthlem3  20959  ioorcl2  21074  vitalilem2  21111  dvexp3  21472  dvcvx  21514  iblulm  21894  chordthmlem4  22252  heron  22255  cubic  22266  dquartlem1  22268  birthdaylem2  22368  ftalem2  22433  basellem3  22442  lgsquadlem1  22715  pntrlog2bndlem4  22851  axsegconlem1  23185  lt2addrd  26058  ballotlemsf1o  26918  lgamgulmlem2  27038  lgamcvg2  27063  fprodser  27484  fprodrev  27510  fallfacval3  27537  lzenom  29134  rmspecfund  29276  fzmaxdif  29350  jm2.18  29363  jm2.19  29368  jm2.20nn  29372
  Copyright terms: Public domain W3C validator