MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncan Structured version   Unicode version

Theorem nncan 9902
Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
nncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )

Proof of Theorem nncan
StepHypRef Expression
1 subsub2 9901 . . 3  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B ) )  =  ( A  +  ( B  -  A ) ) )
213anidm12 1321 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  ( A  +  ( B  -  A ) ) )
3 pncan3 9882 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
42, 3eqtrd 2470 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870  (class class class)co 6305   CCcc 9536    + caddc 9541    - cmin 9859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-ltxr 9679  df-sub 9861
This theorem is referenced by:  nnncan1  9909  nncand  9990  elz2  10954  fzrev2  11857  fzrevral  11877  fzrevral2  11878  bccmpl  12491  revrev  12857  fsumrev  13818  geolim2  13905  dvdssub2  14320  efgredleme  17328  psrcom  18568  psropprmul  18766  icccvx  21874  lebnumii  21890  pcorevlem  21950  pcorev2  21952  pi1xfrcnv  21981  efcvx  23269  sincos3rdpi  23336  cosne0  23344  logtayl  23470  logtayl2  23472  logccv  23473  acoscos  23684  sinacos  23696  cvxcl  23775  scvxcvx  23776  basellem5  23874  logfacbnd3  24014  bposlem1  24075  lgsquadlem2  24146  chtppilimlem2  24175  rplogsumlem1  24185  rpvmasumlem  24188  brbtwn2  24781  ax5seglem1  24804  rescon  29757  dvasin  31731  fouriersw  37662  subsubelfzo0  38410
  Copyright terms: Public domain W3C validator