MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncan Unicode version

Theorem nncan 9286
Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
nncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )

Proof of Theorem nncan
StepHypRef Expression
1 subsub2 9285 . . 3  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B ) )  =  ( A  +  ( B  -  A ) ) )
213anidm12 1241 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  ( A  +  ( B  -  A ) ) )
3 pncan3 9269 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
42, 3eqtrd 2436 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721  (class class class)co 6040   CCcc 8944    + caddc 8949    - cmin 9247
This theorem is referenced by:  nnncan1  9293  nncand  9372  elz2  10254  fzrev2  11065  fzrevral  11086  fzrevral2  11087  bccmpl  11555  revrev  11754  fsumrev  12517  geolim2  12603  dvdssub2  12842  efgredleme  15330  psrcom  16427  psropprmul  16587  icccvx  18928  lebnumii  18944  pcorevlem  19004  pcorev2  19006  pi1xfrcnv  19035  efcvx  20318  sincos3rdpi  20377  cosne0  20385  logtayl  20504  logtayl2  20506  logccv  20507  acoscos  20686  sinacos  20698  cvxcl  20776  scvxcvx  20777  basellem5  20820  logfacbnd3  20960  bposlem1  21021  lgsquadlem2  21092  chtppilimlem2  21121  rplogsumlem1  21131  rpvmasumlem  21134  rescon  24886  brbtwn2  25748  ax5seglem1  25771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081  df-sub 9249
  Copyright terms: Public domain W3C validator