MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncan Structured version   Unicode version

Theorem nncan 9847
Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
nncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )

Proof of Theorem nncan
StepHypRef Expression
1 subsub2 9846 . . 3  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B ) )  =  ( A  +  ( B  -  A ) ) )
213anidm12 1285 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  ( A  +  ( B  -  A ) ) )
3 pncan3 9827 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
42, 3eqtrd 2508 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B )
)  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6283   CCcc 9489    + caddc 9494    - cmin 9804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9629  df-mnf 9630  df-ltxr 9632  df-sub 9806
This theorem is referenced by:  nnncan1  9854  nncand  9934  elz2  10880  fzrev2  11742  fzrevral  11761  fzrevral2  11762  bccmpl  12354  revrev  12703  fsumrev  13556  geolim2  13642  dvdssub2  13881  efgredleme  16564  psrcom  17851  psropprmul  18066  icccvx  21201  lebnumii  21217  pcorevlem  21277  pcorev2  21279  pi1xfrcnv  21308  efcvx  22594  sincos3rdpi  22658  cosne0  22666  logtayl  22785  logtayl2  22787  logccv  22788  acoscos  22968  sinacos  22980  cvxcl  23058  scvxcvx  23059  basellem5  23102  logfacbnd3  23242  bposlem1  23303  lgsquadlem2  23374  chtppilimlem2  23403  rplogsumlem1  23413  rpvmasumlem  23416  brbtwn2  23900  ax5seglem1  23923  rescon  28347  dvasin  29696  fouriersw  31548  subsubelfzo0  31821
  Copyright terms: Public domain W3C validator