MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordex Structured version   Unicode version

Theorem nnawordex 7304
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnawordex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simplr 755 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  e.  om )
2 nnon 6705 . . . . . . . 8  |-  ( B  e.  om  ->  B  e.  On )
31, 2syl 16 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  e.  On )
4 simpll 753 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  A  e.  om )
5 nnaword2 7297 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  om )  ->  B  C_  ( A  +o  B ) )
61, 4, 5syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  C_  ( A  +o  B ) )
7 oveq2 6304 . . . . . . . . 9  |-  ( y  =  B  ->  ( A  +o  y )  =  ( A  +o  B
) )
87sseq2d 3527 . . . . . . . 8  |-  ( y  =  B  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  B ) ) )
98elrab 3257 . . . . . . 7  |-  ( B  e.  { y  e.  On  |  B  C_  ( A  +o  y
) }  <->  ( B  e.  On  /\  B  C_  ( A  +o  B
) ) )
103, 6, 9sylanbrc 664 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  e.  {
y  e.  On  |  B  C_  ( A  +o  y ) } )
11 intss1 4303 . . . . . 6  |-  ( B  e.  { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  B
)
1210, 11syl 16 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  B
)
13 ssrab2 3581 . . . . . . . 8  |-  { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  On
14 ne0i 3799 . . . . . . . . 9  |-  ( B  e.  { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )
1510, 14syl 16 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )
16 oninton 6634 . . . . . . . 8  |-  ( ( { y  e.  On  |  B  C_  ( A  +o  y ) } 
C_  On  /\  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  On )
1713, 15, 16sylancr 663 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  On )
18 eloni 4897 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  On  ->  Ord  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
1917, 18syl 16 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  Ord  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
20 ordom 6708 . . . . . 6  |-  Ord  om
21 ordtr2 4931 . . . . . 6  |-  ( ( Ord  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  /\  Ord  om )  ->  ( ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) } 
C_  B  /\  B  e.  om )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  om ) )
2219, 20, 21sylancl 662 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  C_  B  /\  B  e.  om )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  om ) )
2312, 1, 22mp2and 679 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  om )
24 nna0 7271 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
2524ad2antrr 725 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  (/) )  =  A )
26 simpr 461 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  A  C_  B
)
2725, 26eqsstrd 3533 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  (/) )  C_  B )
28 oveq2 6304 . . . . . . . 8  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  =  (/) 
->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )  =  ( A  +o  (/) ) )
2928sseq1d 3526 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  =  (/) 
->  ( ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  C_  B  <->  ( A  +o  (/) )  C_  B
) )
3027, 29syl5ibrcom 222 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  (/)  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) 
C_  B ) )
31 simprr 757 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  suc  x )
3231oveq2d 6312 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  ( A  +o  suc  x ) )
334adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  A  e.  om )
34 simprl 756 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  x  e.  om )
35 nnasuc 7273 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
3633, 34, 35syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x ) )
3732, 36eqtrd 2498 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  suc  ( A  +o  x ) )
38 nnord 6707 . . . . . . . . . . 11  |-  ( B  e.  om  ->  Ord  B )
391, 38syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  Ord  B )
4039adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  Ord  B )
41 nnon 6705 . . . . . . . . . . . . 13  |-  ( x  e.  om  ->  x  e.  On )
4241adantr 465 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  x  e.  On )
43 vex 3112 . . . . . . . . . . . . . 14  |-  x  e. 
_V
4443sucid 4966 . . . . . . . . . . . . 13  |-  x  e. 
suc  x
45 simpr 461 . . . . . . . . . . . . 13  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  suc  x )
4644, 45syl5eleqr 2552 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  x  e.  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
47 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( A  +o  y )  =  ( A  +o  x
) )
4847sseq2d 3527 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  x ) ) )
4948onnminsb 6638 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
x  e.  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  -.  B  C_  ( A  +o  x ) ) )
5042, 46, 49sylc 60 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  -.  B  C_  ( A  +o  x ) )
5150adantl 466 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  -.  B  C_  ( A  +o  x
) )
52 nnacl 7278 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  x
)  e.  om )
5333, 34, 52syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  x )  e.  om )
54 nnord 6707 . . . . . . . . . . . . 13  |-  ( ( A  +o  x )  e.  om  ->  Ord  ( A  +o  x
) )
5553, 54syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  Ord  ( A  +o  x ) )
56 ordtri1 4920 . . . . . . . . . . . 12  |-  ( ( Ord  B  /\  Ord  ( A  +o  x
) )  ->  ( B  C_  ( A  +o  x )  <->  -.  ( A  +o  x )  e.  B ) )
5740, 55, 56syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( B  C_  ( A  +o  x
)  <->  -.  ( A  +o  x )  e.  B
) )
5857con2bid 329 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( ( A  +o  x )  e.  B  <->  -.  B  C_  ( A  +o  x ) ) )
5951, 58mpbird 232 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  x )  e.  B
)
60 ordsucss 6652 . . . . . . . . 9  |-  ( Ord 
B  ->  ( ( A  +o  x )  e.  B  ->  suc  ( A  +o  x )  C_  B ) )
6140, 59, 60sylc 60 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  suc  ( A  +o  x )  C_  B )
6237, 61eqsstrd 3533 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  C_  B )
6362rexlimdvaa 2950 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( E. x  e.  om  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  suc  x  ->  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  C_  B )
)
64 nn0suc 6723 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  om 
->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  (/)  \/ 
E. x  e.  om  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )
6523, 64syl 16 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  (/)  \/ 
E. x  e.  om  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )
6630, 63, 65mpjaod 381 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  C_  B )
67 onint 6629 . . . . . . 7  |-  ( ( { y  e.  On  |  B  C_  ( A  +o  y ) } 
C_  On  /\  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  { y  e.  On  |  B  C_  ( A  +o  y
) } )
6813, 15, 67sylancr 663 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  {
y  e.  On  |  B  C_  ( A  +o  y ) } )
69 nfrab1 3038 . . . . . . . . 9  |-  F/_ y { y  e.  On  |  B  C_  ( A  +o  y ) }
7069nfint 4298 . . . . . . . 8  |-  F/_ y |^| { y  e.  On  |  B  C_  ( A  +o  y ) }
71 nfcv 2619 . . . . . . . 8  |-  F/_ y On
72 nfcv 2619 . . . . . . . . 9  |-  F/_ y B
73 nfcv 2619 . . . . . . . . . 10  |-  F/_ y A
74 nfcv 2619 . . . . . . . . . 10  |-  F/_ y  +o
7573, 74, 70nfov 6322 . . . . . . . . 9  |-  F/_ y
( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
7672, 75nfss 3492 . . . . . . . 8  |-  F/ y  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
77 oveq2 6304 . . . . . . . . 9  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( A  +o  y )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) )
7877sseq2d 3527 . . . . . . . 8  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) ) )
7970, 71, 76, 78elrabf 3255 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  { y  e.  On  |  B  C_  ( A  +o  y ) }  <->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  On  /\  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) ) )
8079simprbi 464 . . . . . 6  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  { y  e.  On  |  B  C_  ( A  +o  y ) }  ->  B 
C_  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } ) )
8168, 80syl 16 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) )
8266, 81eqssd 3516 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  =  B )
83 oveq2 6304 . . . . . 6  |-  ( x  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( A  +o  x )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) )
8483eqeq1d 2459 . . . . 5  |-  ( x  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  (
( A  +o  x
)  =  B  <->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  B ) )
8584rspcev 3210 . . . 4  |-  ( (
|^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  om  /\  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
8623, 82, 85syl2anc 661 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  E. x  e.  om  ( A  +o  x
)  =  B )
8786ex 434 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
88 nnaword1 7296 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
8988adantlr 714 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
90 sseq2 3521 . . . 4  |-  ( ( A  +o  x )  =  B  ->  ( A  C_  ( A  +o  x )  <->  A  C_  B
) )
9189, 90syl5ibcom 220 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  A  C_  B
) )
9291rexlimdva 2949 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  A  C_  B
) )
9387, 92impbid 191 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   {crab 2811    C_ wss 3471   (/)c0 3793   |^|cint 4288   Ord word 4886   Oncon0 4887   suc csuc 4889  (class class class)co 6296   omcom 6699    +o coa 7145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-oadd 7152
This theorem is referenced by:  nnaordex  7305  unfilem1  7802  hashdom  12450
  Copyright terms: Public domain W3C validator