MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaword Structured version   Unicode version

Theorem nnaword 7315
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )

Proof of Theorem nnaword
StepHypRef Expression
1 nnaord 7307 . . . 4  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  ( B  e.  A  <->  ( C  +o  B )  e.  ( C  +o  A ) ) )
213com12 1203 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( B  e.  A  <->  ( C  +o  B )  e.  ( C  +o  A ) ) )
32notbid 294 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( -.  B  e.  A  <->  -.  ( C  +o  B
)  e.  ( C  +o  A ) ) )
4 nnord 6693 . . . 4  |-  ( A  e.  om  ->  Ord  A )
5 nnord 6693 . . . 4  |-  ( B  e.  om  ->  Ord  B )
6 ordtri1 5445 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
74, 5, 6syl2an 477 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
873adant3 1019 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
9 nnacl 7299 . . . . 5  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  +o  A
)  e.  om )
109ancoms 453 . . . 4  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( C  +o  A
)  e.  om )
11103adant2 1018 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  +o  A )  e. 
om )
12 nnacl 7299 . . . . 5  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  +o  B
)  e.  om )
1312ancoms 453 . . . 4  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( C  +o  B
)  e.  om )
14133adant1 1017 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  +o  B )  e. 
om )
15 nnord 6693 . . . 4  |-  ( ( C  +o  A )  e.  om  ->  Ord  ( C  +o  A
) )
16 nnord 6693 . . . 4  |-  ( ( C  +o  B )  e.  om  ->  Ord  ( C  +o  B
) )
17 ordtri1 5445 . . . 4  |-  ( ( Ord  ( C  +o  A )  /\  Ord  ( C  +o  B
) )  ->  (
( C  +o  A
)  C_  ( C  +o  B )  <->  -.  ( C  +o  B )  e.  ( C  +o  A
) ) )
1815, 16, 17syl2an 477 . . 3  |-  ( ( ( C  +o  A
)  e.  om  /\  ( C  +o  B
)  e.  om )  ->  ( ( C  +o  A )  C_  ( C  +o  B )  <->  -.  ( C  +o  B )  e.  ( C  +o  A
) ) )
1911, 14, 18syl2anc 661 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  C_  ( C  +o  B )  <->  -.  ( C  +o  B )  e.  ( C  +o  A
) ) )
203, 8, 193bitr4d 287 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ w3a 976    e. wcel 1844    C_ wss 3416   Ord word 5411  (class class class)co 6280   omcom 6685    +o coa 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-oadd 7173
This theorem is referenced by:  nnacan  7316  nnaword1  7317
  Copyright terms: Public domain W3C validator