MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordi Structured version   Unicode version

Theorem nnaordi 7285
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem nnaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 6709 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
21ancoms 453 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  om )
32adantll 713 . . . 4  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  A  e.  om )
4 nnord 6707 . . . . . . . . 9  |-  ( B  e.  om  ->  Ord  B )
5 ordsucss 6652 . . . . . . . . 9  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
64, 5syl 16 . . . . . . . 8  |-  ( B  e.  om  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
76ad2antlr 726 . . . . . . 7  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( A  e.  B  ->  suc  A  C_  B ) )
8 peano2b 6715 . . . . . . . . . 10  |-  ( A  e.  om  <->  suc  A  e. 
om )
9 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  suc  A  -> 
( C  +o  x
)  =  ( C  +o  suc  A ) )
109sseq2d 3527 . . . . . . . . . . . . 13  |-  ( x  =  suc  A  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) )
1110imbi2d 316 . . . . . . . . . . . 12  |-  ( x  =  suc  A  -> 
( ( C  e. 
om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <-> 
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  A ) ) ) )
12 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( C  +o  x )  =  ( C  +o  y
) )
1312sseq2d 3527 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) )
1413imbi2d 316 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) ) )
15 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( C  +o  x
)  =  ( C  +o  suc  y ) )
1615sseq2d 3527 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) )
1716imbi2d 316 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( C  e. 
om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <-> 
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) ) )
18 oveq2 6304 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( C  +o  x )  =  ( C  +o  B
) )
1918sseq2d 3527 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
2019imbi2d 316 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) ) )
21 ssid 3518 . . . . . . . . . . . . 13  |-  ( C  +o  suc  A ) 
C_  ( C  +o  suc  A )
2221a1ii 27 . . . . . . . . . . . 12  |-  ( suc 
A  e.  om  ->  ( C  e.  om  ->  ( C  +o  suc  A
)  C_  ( C  +o  suc  A ) ) )
23 sssucid 4964 . . . . . . . . . . . . . . . . 17  |-  ( C  +o  y )  C_  suc  ( C  +o  y
)
24 sstr2 3506 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  (
( C  +o  y
)  C_  suc  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2523, 24mpi 17 . . . . . . . . . . . . . . . 16  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  suc  ( C  +o  y ) )
26 nnasuc 7273 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2726ancoms 453 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  om  /\  C  e.  om )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2827sseq2d 3527 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  om  /\  C  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  suc  y )  <-> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2925, 28syl5ibr 221 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  om  /\  C  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) )
3029ex 434 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  ( C  e.  om  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3130ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  om  /\ 
suc  A  e.  om )  /\  suc  A  C_  y )  ->  ( C  e.  om  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3231a2d 26 . . . . . . . . . . . 12  |-  ( ( ( y  e.  om  /\ 
suc  A  e.  om )  /\  suc  A  C_  y )  ->  (
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) )  -> 
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) ) )
3311, 14, 17, 20, 22, 32findsg 6726 . . . . . . . . . . 11  |-  ( ( ( B  e.  om  /\ 
suc  A  e.  om )  /\  suc  A  C_  B )  ->  ( C  e.  om  ->  ( C  +o  suc  A
)  C_  ( C  +o  B ) ) )
3433exp31 604 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( suc  A  e.  om  ->  ( suc  A  C_  B  ->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
358, 34syl5bi 217 . . . . . . . . 9  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( suc  A  C_  B  ->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
3635com4r 86 . . . . . . . 8  |-  ( C  e.  om  ->  ( B  e.  om  ->  ( A  e.  om  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
3736imp31 432 . . . . . . 7  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
38 nnasuc 7273 . . . . . . . . . 10  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  +o  suc  A )  =  suc  ( C  +o  A ) )
3938sseq1d 3526 . . . . . . . . 9  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  <->  suc  ( C  +o  A )  C_  ( C  +o  B
) ) )
40 ovex 6324 . . . . . . . . . 10  |-  ( C  +o  A )  e. 
_V
41 sucssel 4979 . . . . . . . . . 10  |-  ( ( C  +o  A )  e.  _V  ->  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
4240, 41ax-mp 5 . . . . . . . . 9  |-  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
4339, 42syl6bi 228 . . . . . . . 8  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  -> 
( C  +o  A
)  e.  ( C  +o  B ) ) )
4443adantlr 714 . . . . . . 7  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( ( C  +o  suc  A ) 
C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
457, 37, 443syld 55 . . . . . 6  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
4645imp 429 . . . . 5  |-  ( ( ( ( C  e. 
om  /\  B  e.  om )  /\  A  e. 
om )  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
4746an32s 804 . . . 4  |-  ( ( ( ( C  e. 
om  /\  B  e.  om )  /\  A  e.  B )  /\  A  e.  om )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
483, 47mpdan 668 . . 3  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  ( C  +o  A )  e.  ( C  +o  B ) )
4948ex 434 . 2  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
5049ancoms 453 1  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109    C_ wss 3471   Ord word 4886   suc csuc 4889  (class class class)co 6296   omcom 6699    +o coa 7145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-oadd 7152
This theorem is referenced by:  nnaord  7286  nnmordi  7298  addclpi  9287  addnidpi  9296
  Copyright terms: Public domain W3C validator