MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordi Structured version   Unicode version

Theorem nnaordi 7274
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )

Proof of Theorem nnaordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 6660 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
21ancoms 454 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  e.  om )
32adantll 718 . . . 4  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  A  e.  om )
4 nnord 6658 . . . . . . . . 9  |-  ( B  e.  om  ->  Ord  B )
5 ordsucss 6603 . . . . . . . . 9  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
64, 5syl 17 . . . . . . . 8  |-  ( B  e.  om  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
76ad2antlr 731 . . . . . . 7  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( A  e.  B  ->  suc  A  C_  B ) )
8 peano2b 6666 . . . . . . . . . 10  |-  ( A  e.  om  <->  suc  A  e. 
om )
9 oveq2 6257 . . . . . . . . . . . . . 14  |-  ( x  =  suc  A  -> 
( C  +o  x
)  =  ( C  +o  suc  A ) )
109sseq2d 3435 . . . . . . . . . . . . 13  |-  ( x  =  suc  A  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  A
) ) )
1110imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  suc  A  -> 
( ( C  e. 
om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <-> 
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  A ) ) ) )
12 oveq2 6257 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( C  +o  x )  =  ( C  +o  y
) )
1312sseq2d 3435 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) )
1413imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  y
) ) ) )
15 oveq2 6257 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( C  +o  x
)  =  ( C  +o  suc  y ) )
1615sseq2d 3435 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  suc  y
) ) )
1716imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( C  e. 
om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <-> 
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) ) )
18 oveq2 6257 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( C  +o  x )  =  ( C  +o  B
) )
1918sseq2d 3435 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
( C  +o  suc  A )  C_  ( C  +o  x )  <->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
2019imbi2d 317 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  x ) )  <->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) ) )
21 ssid 3426 . . . . . . . . . . . . 13  |-  ( C  +o  suc  A ) 
C_  ( C  +o  suc  A )
22212a1i 12 . . . . . . . . . . . 12  |-  ( suc 
A  e.  om  ->  ( C  e.  om  ->  ( C  +o  suc  A
)  C_  ( C  +o  suc  A ) ) )
23 sssucid 5462 . . . . . . . . . . . . . . . . 17  |-  ( C  +o  y )  C_  suc  ( C  +o  y
)
24 sstr2 3414 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  (
( C  +o  y
)  C_  suc  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2523, 24mpi 20 . . . . . . . . . . . . . . . 16  |-  ( ( C  +o  suc  A
)  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  suc  ( C  +o  y ) )
26 nnasuc 7262 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2726ancoms 454 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  om  /\  C  e.  om )  ->  ( C  +o  suc  y )  =  suc  ( C  +o  y
) )
2827sseq2d 3435 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  om  /\  C  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  suc  y )  <-> 
( C  +o  suc  A )  C_  suc  ( C  +o  y ) ) )
2925, 28syl5ibr 224 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  om  /\  C  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  -> 
( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) )
3029ex 435 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  ( C  e.  om  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3130ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  om  /\ 
suc  A  e.  om )  /\  suc  A  C_  y )  ->  ( C  e.  om  ->  ( ( C  +o  suc  A )  C_  ( C  +o  y )  ->  ( C  +o  suc  A ) 
C_  ( C  +o  suc  y ) ) ) )
3231a2d 29 . . . . . . . . . . . 12  |-  ( ( ( y  e.  om  /\ 
suc  A  e.  om )  /\  suc  A  C_  y )  ->  (
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  y ) )  -> 
( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  suc  y ) ) ) )
3311, 14, 17, 20, 22, 32findsg 6678 . . . . . . . . . . 11  |-  ( ( ( B  e.  om  /\ 
suc  A  e.  om )  /\  suc  A  C_  B )  ->  ( C  e.  om  ->  ( C  +o  suc  A
)  C_  ( C  +o  B ) ) )
3433exp31 607 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( suc  A  e.  om  ->  ( suc  A  C_  B  ->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
358, 34syl5bi 220 . . . . . . . . 9  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( suc  A  C_  B  ->  ( C  e.  om  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
3635com4r 89 . . . . . . . 8  |-  ( C  e.  om  ->  ( B  e.  om  ->  ( A  e.  om  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B ) ) ) ) )
3736imp31 433 . . . . . . 7  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( suc  A  C_  B  ->  ( C  +o  suc  A )  C_  ( C  +o  B
) ) )
38 nnasuc 7262 . . . . . . . . . 10  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  +o  suc  A )  =  suc  ( C  +o  A ) )
3938sseq1d 3434 . . . . . . . . 9  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  <->  suc  ( C  +o  A )  C_  ( C  +o  B
) ) )
40 ovex 6277 . . . . . . . . . 10  |-  ( C  +o  A )  e. 
_V
41 sucssel 5477 . . . . . . . . . 10  |-  ( ( C  +o  A )  e.  _V  ->  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
4240, 41ax-mp 5 . . . . . . . . 9  |-  ( suc  ( C  +o  A
)  C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
4339, 42syl6bi 231 . . . . . . . 8  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( ( C  +o  suc  A )  C_  ( C  +o  B )  -> 
( C  +o  A
)  e.  ( C  +o  B ) ) )
4443adantlr 719 . . . . . . 7  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( ( C  +o  suc  A ) 
C_  ( C  +o  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) ) )
457, 37, 443syld 57 . . . . . 6  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
4645imp 430 . . . . 5  |-  ( ( ( ( C  e. 
om  /\  B  e.  om )  /\  A  e. 
om )  /\  A  e.  B )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
4746an32s 811 . . . 4  |-  ( ( ( ( C  e. 
om  /\  B  e.  om )  /\  A  e.  B )  /\  A  e.  om )  ->  ( C  +o  A )  e.  ( C  +o  B
) )
483, 47mpdan 672 . . 3  |-  ( ( ( C  e.  om  /\  B  e.  om )  /\  A  e.  B
)  ->  ( C  +o  A )  e.  ( C  +o  B ) )
4948ex 435 . 2  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
5049ancoms 454 1  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   _Vcvv 3022    C_ wss 3379   Ord word 5384   suc csuc 5387  (class class class)co 6249   omcom 6650    +o coa 7134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-oadd 7141
This theorem is referenced by:  nnaord  7275  nnmordi  7287  addclpi  9268  addnidpi  9277
  Copyright terms: Public domain W3C validator