MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddcld Structured version   Unicode version

Theorem nnaddcld 10366
Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1  |-  ( ph  ->  A  e.  NN )
nnmulcld.2  |-  ( ph  ->  B  e.  NN )
Assertion
Ref Expression
nnaddcld  |-  ( ph  ->  ( A  +  B
)  e.  NN )

Proof of Theorem nnaddcld
StepHypRef Expression
1 nnge1d.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnmulcld.2 . 2  |-  ( ph  ->  B  e.  NN )
3 nnaddcl 10342 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )
41, 2, 3syl2anc 661 1  |-  ( ph  ->  ( A  +  B
)  e.  NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756  (class class class)co 6089    + caddc 9283   NNcn 10320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-addass 9345  ax-i2m1 9348  ax-1ne0 9349  ax-rrecex 9352  ax-cnre 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-ov 6092  df-om 6475  df-recs 6830  df-rdg 6864  df-nn 10321
This theorem is referenced by:  pythagtriplem4  13884  pythagtriplem6  13886  pythagtriplem7  13887  pythagtriplem11  13890  pythagtriplem13  13892  pythagtriplem15  13894  vdwlem1  14040  vdwlem3  14042  vdwlem5  14044  vdwlem6  14045  vdwlem8  14047  vdwlem9  14048  vdwlem10  14049  vdwlem11  14050  gsumccat  15517  aaliou3lem8  21809  lgsqrlem2  22679  lgseisenlem2  22687  ballotlem5  26880  faclimlem1  27547  faclimlem2  27548  faclim2  27552
  Copyright terms: Public domain W3C validator