MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacom Structured version   Unicode version

Theorem nnacom 7258
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )

Proof of Theorem nnacom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6277 . . . . 5  |-  ( x  =  A  ->  (
x  +o  B )  =  ( A  +o  B ) )
2 oveq2 6278 . . . . 5  |-  ( x  =  A  ->  ( B  +o  x )  =  ( B  +o  A
) )
31, 2eqeq12d 2476 . . . 4  |-  ( x  =  A  ->  (
( x  +o  B
)  =  ( B  +o  x )  <->  ( A  +o  B )  =  ( B  +o  A ) ) )
43imbi2d 314 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  +o  B
)  =  ( B  +o  x ) )  <-> 
( B  e.  om  ->  ( A  +o  B
)  =  ( B  +o  A ) ) ) )
5 oveq1 6277 . . . . 5  |-  ( x  =  (/)  ->  ( x  +o  B )  =  ( (/)  +o  B
) )
6 oveq2 6278 . . . . 5  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
75, 6eqeq12d 2476 . . . 4  |-  ( x  =  (/)  ->  ( ( x  +o  B )  =  ( B  +o  x )  <->  ( (/)  +o  B
)  =  ( B  +o  (/) ) ) )
8 oveq1 6277 . . . . 5  |-  ( x  =  y  ->  (
x  +o  B )  =  ( y  +o  B ) )
9 oveq2 6278 . . . . 5  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
108, 9eqeq12d 2476 . . . 4  |-  ( x  =  y  ->  (
( x  +o  B
)  =  ( B  +o  x )  <->  ( y  +o  B )  =  ( B  +o  y ) ) )
11 oveq1 6277 . . . . 5  |-  ( x  =  suc  y  -> 
( x  +o  B
)  =  ( suc  y  +o  B ) )
12 oveq2 6278 . . . . 5  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1311, 12eqeq12d 2476 . . . 4  |-  ( x  =  suc  y  -> 
( ( x  +o  B )  =  ( B  +o  x )  <-> 
( suc  y  +o  B )  =  ( B  +o  suc  y
) ) )
14 nna0r 7250 . . . . 5  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  B )
15 nna0 7245 . . . . 5  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
1614, 15eqtr4d 2498 . . . 4  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  ( B  +o  (/) ) )
17 suceq 4932 . . . . . 6  |-  ( ( y  +o  B )  =  ( B  +o  y )  ->  suc  ( y  +o  B
)  =  suc  ( B  +o  y ) )
18 oveq2 6278 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( suc  y  +o  x
)  =  ( suc  y  +o  B ) )
19 oveq2 6278 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
y  +o  x )  =  ( y  +o  B ) )
20 suceq 4932 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  B )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  B ) )
2119, 20syl 16 . . . . . . . . . . 11  |-  ( x  =  B  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  B ) )
2218, 21eqeq12d 2476 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  B )  =  suc  ( y  +o  B
) ) )
2322imbi2d 314 . . . . . . . . 9  |-  ( x  =  B  ->  (
( y  e.  om  ->  ( suc  y  +o  x )  =  suc  ( y  +o  x
) )  <->  ( y  e.  om  ->  ( suc  y  +o  B )  =  suc  ( y  +o  B ) ) ) )
24 oveq2 6278 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( suc  y  +o  x )  =  ( suc  y  +o  (/) ) )
25 oveq2 6278 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( y  +o  x )  =  ( y  +o  (/) ) )
26 suceq 4932 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  (/) )  ->  suc  (
y  +o  x )  =  suc  ( y  +o  (/) ) )
2725, 26syl 16 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  suc  (
y  +o  x )  =  suc  ( y  +o  (/) ) )
2824, 27eqeq12d 2476 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( suc  y  +o  x
)  =  suc  (
y  +o  x )  <-> 
( suc  y  +o  (/) )  =  suc  (
y  +o  (/) ) ) )
29 oveq2 6278 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( suc  y  +o  x
)  =  ( suc  y  +o  z ) )
30 oveq2 6278 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
y  +o  x )  =  ( y  +o  z ) )
31 suceq 4932 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  z )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  z ) )
3230, 31syl 16 . . . . . . . . . . 11  |-  ( x  =  z  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  z ) )
3329, 32eqeq12d 2476 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  z )  =  suc  ( y  +o  z
) ) )
34 oveq2 6278 . . . . . . . . . . 11  |-  ( x  =  suc  z  -> 
( suc  y  +o  x )  =  ( suc  y  +o  suc  z ) )
35 oveq2 6278 . . . . . . . . . . . 12  |-  ( x  =  suc  z  -> 
( y  +o  x
)  =  ( y  +o  suc  z ) )
36 suceq 4932 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o 
suc  z )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  suc  z
) )
3735, 36syl 16 . . . . . . . . . . 11  |-  ( x  =  suc  z  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  suc  z
) )
3834, 37eqeq12d 2476 . . . . . . . . . 10  |-  ( x  =  suc  z  -> 
( ( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  suc  z )  =  suc  ( y  +o 
suc  z ) ) )
39 peano2 6693 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  suc  y  e.  om )
40 nna0 7245 . . . . . . . . . . . 12  |-  ( suc  y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  y )
4139, 40syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  y )
42 nna0 7245 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  (
y  +o  (/) )  =  y )
43 suceq 4932 . . . . . . . . . . . 12  |-  ( ( y  +o  (/) )  =  y  ->  suc  ( y  +o  (/) )  =  suc  y )
4442, 43syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  suc  ( y  +o  (/) )  =  suc  y )
4541, 44eqtr4d 2498 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  ( y  +o  (/) ) )
46 suceq 4932 . . . . . . . . . . . 12  |-  ( ( suc  y  +o  z
)  =  suc  (
y  +o  z )  ->  suc  ( suc  y  +o  z )  =  suc  suc  ( y  +o  z ) )
47 nnasuc 7247 . . . . . . . . . . . . . 14  |-  ( ( suc  y  e.  om  /\  z  e.  om )  ->  ( suc  y  +o 
suc  z )  =  suc  ( suc  y  +o  z ) )
4839, 47sylan 469 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( suc  y  +o 
suc  z )  =  suc  ( suc  y  +o  z ) )
49 nnasuc 7247 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  +o  suc  z )  =  suc  ( y  +o  z
) )
50 suceq 4932 . . . . . . . . . . . . . 14  |-  ( ( y  +o  suc  z
)  =  suc  (
y  +o  z )  ->  suc  ( y  +o  suc  z )  =  suc  suc  ( y  +o  z ) )
5149, 50syl 16 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  z  e.  om )  ->  suc  ( y  +o 
suc  z )  =  suc  suc  ( y  +o  z ) )
5248, 51eqeq12d 2476 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( suc  y  +o  suc  z )  =  suc  ( y  +o 
suc  z )  <->  suc  ( suc  y  +o  z )  =  suc  suc  (
y  +o  z ) ) )
5346, 52syl5ibr 221 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( suc  y  +o  z )  =  suc  ( y  +o  z
)  ->  ( suc  y  +o  suc  z )  =  suc  ( y  +o  suc  z ) ) )
5453expcom 433 . . . . . . . . . 10  |-  ( z  e.  om  ->  (
y  e.  om  ->  ( ( suc  y  +o  z )  =  suc  ( y  +o  z
)  ->  ( suc  y  +o  suc  z )  =  suc  ( y  +o  suc  z ) ) ) )
5528, 33, 38, 45, 54finds2 6701 . . . . . . . . 9  |-  ( x  e.  om  ->  (
y  e.  om  ->  ( suc  y  +o  x
)  =  suc  (
y  +o  x ) ) )
5623, 55vtoclga 3170 . . . . . . . 8  |-  ( B  e.  om  ->  (
y  e.  om  ->  ( suc  y  +o  B
)  =  suc  (
y  +o  B ) ) )
5756imp 427 . . . . . . 7  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( suc  y  +o  B )  =  suc  ( y  +o  B
) )
58 nnasuc 7247 . . . . . . 7  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
5957, 58eqeq12d 2476 . . . . . 6  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( ( suc  y  +o  B )  =  ( B  +o  suc  y
)  <->  suc  ( y  +o  B )  =  suc  ( B  +o  y
) ) )
6017, 59syl5ibr 221 . . . . 5  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( ( y  +o  B )  =  ( B  +o  y )  ->  ( suc  y  +o  B )  =  ( B  +o  suc  y
) ) )
6160expcom 433 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  +o  B
)  =  ( B  +o  y )  -> 
( suc  y  +o  B )  =  ( B  +o  suc  y
) ) ) )
627, 10, 13, 16, 61finds2 6701 . . 3  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  +o  B )  =  ( B  +o  x ) ) )
634, 62vtoclga 3170 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  +o  B )  =  ( B  +o  A ) ) )
6463imp 427 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   (/)c0 3783   suc csuc 4869  (class class class)co 6270   omcom 6673    +o coa 7119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-oadd 7126
This theorem is referenced by:  nnaordr  7261  nnmsucr  7266  nnaword2  7271  omopthlem2  7297  omopthi  7298  addcompi  9261
  Copyright terms: Public domain W3C validator