MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacl Unicode version

Theorem nnacl 6495
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )

Proof of Theorem nnacl
StepHypRef Expression
1 oveq2 5718 . . . . 5  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
21eleq1d 2319 . . . 4  |-  ( x  =  B  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  B )  e.  om ) )
32imbi2d 309 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  +o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) ) )
4 oveq2 5718 . . . . 5  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
54eleq1d 2319 . . . 4  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  om  <->  ( A  +o  (/) )  e.  om ) )
6 oveq2 5718 . . . . 5  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
76eleq1d 2319 . . . 4  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  y )  e.  om ) )
8 oveq2 5718 . . . . 5  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
98eleq1d 2319 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  om  <->  ( A  +o  suc  y
)  e.  om )
)
10 nna0 6488 . . . . . 6  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1110eleq1d 2319 . . . . 5  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e. 
om 
<->  A  e.  om )
)
1211ibir 235 . . . 4  |-  ( A  e.  om  ->  ( A  +o  (/) )  e.  om )
13 peano2 4567 . . . . . 6  |-  ( ( A  +o  y )  e.  om  ->  suc  ( A  +o  y
)  e.  om )
14 nnasuc 6490 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
1514eleq1d 2319 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  suc  y )  e.  om  <->  suc  ( A  +o  y
)  e.  om )
)
1613, 15syl5ibr 214 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  y )  e.  om  ->  ( A  +o  suc  y )  e.  om ) )
1716expcom 426 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  +o  y
)  e.  om  ->  ( A  +o  suc  y
)  e.  om )
) )
185, 7, 9, 12, 17finds2 4575 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  +o  x )  e.  om ) )
193, 18vtoclga 2787 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) )
2019impcom 421 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   (/)c0 3362   suc csuc 4287   omcom 4547  (class class class)co 5710    +o coa 6362
This theorem is referenced by:  nnmcl  6496  nnacli  6498  nnarcl  6500  nnaord  6503  nnawordi  6505  nnaass  6506  nndi  6507  nnaword  6511  nnawordex  6521  oaabslem  6527  unfilem1  7006  unfi  7009  nnacda  7711  ficardun  7712  ficardun2  7713  pwsdompw  7714  addclpi  8396  hashgadd  11237  hashdom  11239
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-recs 6274  df-rdg 6309  df-oadd 6369
  Copyright terms: Public domain W3C validator