MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacan Structured version   Unicode version

Theorem nnacan 7180
Description: Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacan  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  =  ( A  +o  C )  <->  B  =  C ) )

Proof of Theorem nnacan
StepHypRef Expression
1 nnaword 7179 . . . . 5  |-  ( ( B  e.  om  /\  C  e.  om  /\  A  e.  om )  ->  ( B  C_  C  <->  ( A  +o  B )  C_  ( A  +o  C ) ) )
213comr 1196 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( B  C_  C  <->  ( A  +o  B )  C_  ( A  +o  C ) ) )
3 nnaword 7179 . . . . 5  |-  ( ( C  e.  om  /\  B  e.  om  /\  A  e.  om )  ->  ( C  C_  B  <->  ( A  +o  C )  C_  ( A  +o  B ) ) )
433com13 1193 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  C_  B  <->  ( A  +o  C )  C_  ( A  +o  B ) ) )
52, 4anbi12d 710 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( B  C_  C  /\  C  C_  B )  <-> 
( ( A  +o  B )  C_  ( A  +o  C )  /\  ( A  +o  C
)  C_  ( A  +o  B ) ) ) )
65bicomd 201 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( ( A  +o  B )  C_  ( A  +o  C )  /\  ( A  +o  C
)  C_  ( A  +o  B ) )  <->  ( B  C_  C  /\  C  C_  B ) ) )
7 eqss 3482 . 2  |-  ( ( A  +o  B )  =  ( A  +o  C )  <->  ( ( A  +o  B )  C_  ( A  +o  C
)  /\  ( A  +o  C )  C_  ( A  +o  B ) ) )
8 eqss 3482 . 2  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
96, 7, 83bitr4g 288 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  =  ( A  +o  C )  <->  B  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    C_ wss 3439  (class class class)co 6203   omcom 6589    +o coa 7030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-recs 6945  df-rdg 6979  df-oadd 7037
This theorem is referenced by:  omopthi  7209  unfilem2  7691  ackbij1lem13  8516  ackbij1lem16  8519  addcanpi  9183
  Copyright terms: Public domain W3C validator