MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1suc Structured version   Visualization version   Unicode version

Theorem nn1suc 10652
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nn1suc.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
nn1suc.4  |-  ( x  =  A  ->  ( ph 
<->  th ) )
nn1suc.5  |-  ps
nn1suc.6  |-  ( y  e.  NN  ->  ch )
Assertion
Ref Expression
nn1suc  |-  ( A  e.  NN  ->  th )
Distinct variable groups:    x, y, A    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5  |-  ps
2 1ex 9656 . . . . . 6  |-  1  e.  _V
3 nn1suc.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
42, 3sbcie 3290 . . . . 5  |-  ( [.
1  /  x ]. ph  <->  ps )
51, 4mpbir 214 . . . 4  |-  [. 1  /  x ]. ph
6 1nn 10642 . . . . . . 7  |-  1  e.  NN
7 eleq1 2537 . . . . . . 7  |-  ( A  =  1  ->  ( A  e.  NN  <->  1  e.  NN ) )
86, 7mpbiri 241 . . . . . 6  |-  ( A  =  1  ->  A  e.  NN )
9 nn1suc.4 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  th ) )
109sbcieg 3288 . . . . . 6  |-  ( A  e.  NN  ->  ( [. A  /  x ]. ph  <->  th ) )
118, 10syl 17 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  th ) )
12 dfsbcq 3257 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  [. 1  /  x ]. ph ) )
1311, 12bitr3d 263 . . . 4  |-  ( A  =  1  ->  ( th 
<-> 
[. 1  /  x ]. ph ) )
145, 13mpbiri 241 . . 3  |-  ( A  =  1  ->  th )
1514a1i 11 . 2  |-  ( A  e.  NN  ->  ( A  =  1  ->  th ) )
16 ovex 6336 . . . . . 6  |-  ( y  +  1 )  e. 
_V
17 nn1suc.3 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
1816, 17sbcie 3290 . . . . 5  |-  ( [. ( y  +  1 )  /  x ]. ph  <->  ch )
19 oveq1 6315 . . . . . 6  |-  ( y  =  ( A  - 
1 )  ->  (
y  +  1 )  =  ( ( A  -  1 )  +  1 ) )
2019sbceq1d 3260 . . . . 5  |-  ( y  =  ( A  - 
1 )  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  [. ( ( A  - 
1 )  +  1 )  /  x ]. ph ) )
2118, 20syl5bbr 267 . . . 4  |-  ( y  =  ( A  - 
1 )  ->  ( ch 
<-> 
[. ( ( A  -  1 )  +  1 )  /  x ]. ph ) )
22 nn1suc.6 . . . 4  |-  ( y  e.  NN  ->  ch )
2321, 22vtoclga 3099 . . 3  |-  ( ( A  -  1 )  e.  NN  ->  [. (
( A  -  1 )  +  1 )  /  x ]. ph )
24 nncn 10639 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
25 ax-1cn 9615 . . . . . 6  |-  1  e.  CC
26 npcan 9904 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
2724, 25, 26sylancl 675 . . . . 5  |-  ( A  e.  NN  ->  (
( A  -  1 )  +  1 )  =  A )
2827sbceq1d 3260 . . . 4  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
2928, 10bitrd 261 . . 3  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  th ) )
3023, 29syl5ib 227 . 2  |-  ( A  e.  NN  ->  (
( A  -  1 )  e.  NN  ->  th ) )
31 nn1m1nn 10651 . 2  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )
3215, 30, 31mpjaod 388 1  |-  ( A  e.  NN  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    = wceq 1452    e. wcel 1904   [.wsbc 3255  (class class class)co 6308   CCcc 9555   1c1 9558    + caddc 9560    - cmin 9880   NNcn 10631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-ltxr 9698  df-sub 9882  df-nn 10632
This theorem is referenced by:  opsqrlem6  27879
  Copyright terms: Public domain W3C validator