MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sscn Structured version   Unicode version

Theorem nn0sscn 10589
Description: Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0sscn  |-  NN0  C_  CC

Proof of Theorem nn0sscn
StepHypRef Expression
1 nn0ssre 10588 . 2  |-  NN0  C_  RR
2 ax-resscn 9344 . 2  |-  RR  C_  CC
31, 2sstri 3370 1  |-  NN0  C_  CC
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3333   CCcc 9285   RRcr 9286   NN0cn0 10584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-i2m1 9355  ax-1ne0 9356  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-om 6482  df-recs 6837  df-rdg 6871  df-nn 10328  df-n0 10585
This theorem is referenced by:  nn0cn  10594  nn0expcl  11884  fsumnn0cl  13218  divalglem8  13609  psrridm  17481  psrridmOLD  17482  nn0srg  17886  tdeglem3  21533  eulerpartlems  26748  fprodnn0cl  27475  nn0risefaccl  27530  deg1mhm  29580
  Copyright terms: Public domain W3C validator