Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0prpw Structured version   Unicode version

Theorem nn0prpw 30971
Description: Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
nn0prpw  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  =  B  <->  A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
Distinct variable groups:    n, p, A    B, n, p

Proof of Theorem nn0prpw
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 breq2 4424 . . . 4  |-  ( A  =  B  ->  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) )
21a1d 26 . . 3  |-  ( A  =  B  ->  (
( p  e.  Prime  /\  n  e.  NN )  ->  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )
) )
32ralrimivv 2845 . 2  |-  ( A  =  B  ->  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) )
4 elnn0 10871 . . 3  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
5 elnn0 10871 . . . . . . 7  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
6 nnre 10616 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  RR )
7 nnre 10616 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  B  e.  RR )
8 lttri2 9716 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
96, 7, 8syl2an 479 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
109ancoms 454 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
11 nn0prpwlem 30970 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  A. k  e.  NN  ( k  < 
B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B ) ) )
12 breq1 4423 . . . . . . . . . . . . . . . 16  |-  ( k  =  A  ->  (
k  <  B  <->  A  <  B ) )
13 breq2 4424 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  A  ->  (
( p ^ n
)  ||  k  <->  ( p ^ n )  ||  A ) )
1413bibi1d 320 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  A  ->  (
( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  B ) ) )
1514notbid 295 . . . . . . . . . . . . . . . . 17  |-  ( k  =  A  ->  ( -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B )  <->  -.  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
16152rexbidv 2946 . . . . . . . . . . . . . . . 16  |-  ( k  =  A  ->  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B )  <->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
1712, 16imbi12d 321 . . . . . . . . . . . . . . 15  |-  ( k  =  A  ->  (
( k  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B ) )  <-> 
( A  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
1817rspcv 3178 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( A. k  e.  NN  ( k  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B ) )  ->  ( A  < 
B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
1911, 18mpan9 471 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
20 nn0prpwlem 30970 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  A. k  e.  NN  ( k  < 
A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A ) ) )
21 breq1 4423 . . . . . . . . . . . . . . . . 17  |-  ( k  =  B  ->  (
k  <  A  <->  B  <  A ) )
22 breq2 4424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  B  ->  (
( p ^ n
)  ||  k  <->  ( p ^ n )  ||  B ) )
2322bibi1d 320 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  B  ->  (
( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  ( (
p ^ n ) 
||  B  <->  ( p ^ n )  ||  A ) ) )
24 bicom 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p ^ n
)  ||  B  <->  ( p ^ n )  ||  A )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  B ) )
2523, 24syl6bb 264 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  B  ->  (
( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  B ) ) )
2625notbid 295 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  B  ->  ( -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  -.  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
27262rexbidv 2946 . . . . . . . . . . . . . . . . 17  |-  ( k  =  B  ->  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
2821, 27imbi12d 321 . . . . . . . . . . . . . . . 16  |-  ( k  =  B  ->  (
( k  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A ) )  <-> 
( B  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
2928rspcv 3178 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  ( A. k  e.  NN  ( k  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A ) )  ->  ( B  < 
A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
3020, 29syl5com 31 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( B  e.  NN  ->  ( B  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
3130impcom 431 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( B  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
3219, 31jaod 381 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( ( A  < 
B  \/  B  < 
A )  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
3310, 32sylbid 218 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A  =/=  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
34 df-ne 2620 . . . . . . . . . . 11  |-  ( A  =/=  B  <->  -.  A  =  B )
35 rexnal2 2929 . . . . . . . . . . 11  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  B )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) )
3633, 34, 353imtr3g 272 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( -.  A  =  B  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
3736con4d 108 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )
)
3837ex 435 . . . . . . . 8  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
39 prmunb 14845 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  E. p  e.  Prime  A  <  p
)
40 1nn 10620 . . . . . . . . . . . . . . 15  |-  1  e.  NN
41 prmz 14613 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  Prime  ->  p  e.  ZZ )
42 1nn0 10885 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  NN0
43 zexpcl 12286 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  ZZ  /\  1  e.  NN0 )  -> 
( p ^ 1 )  e.  ZZ )
4441, 42, 43sylancl 666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  Prime  ->  ( p ^ 1 )  e.  ZZ )
45 dvdsle 14337 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( p ^ 1 )  e.  ZZ  /\  A  e.  NN )  ->  ( ( p ^
1 )  ||  A  ->  ( p ^ 1 )  <_  A )
)
4644, 45sylan 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  ||  A  -> 
( p ^ 1 )  <_  A )
)
47 prmnn 14612 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  Prime  ->  p  e.  NN )
48 nnre 10616 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  NN  ->  p  e.  RR )
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  e.  Prime  ->  p  e.  RR )
50 reexpcl 12288 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  RR  /\  1  e.  NN0 )  -> 
( p ^ 1 )  e.  RR )
5149, 42, 50sylancl 666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  Prime  ->  ( p ^ 1 )  e.  RR )
52 lenlt 9712 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( p ^ 1 )  e.  RR  /\  A  e.  RR )  ->  ( ( p ^
1 )  <_  A  <->  -.  A  <  ( p ^ 1 ) ) )
5351, 6, 52syl2an 479 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  <_  A  <->  -.  A  <  ( p ^ 1 ) ) )
5447nncnd 10625 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( p  e.  Prime  ->  p  e.  CC )
5554exp1d 12410 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  Prime  ->  ( p ^ 1 )  =  p )
5655adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p ^ 1 )  =  p )
5756breq2d 4432 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  ( A  <  ( p ^
1 )  <->  A  <  p ) )
5857notbid 295 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  ( -.  A  <  ( p ^ 1 )  <->  -.  A  <  p ) )
5953, 58bitrd 256 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  <_  A  <->  -.  A  <  p ) )
6046, 59sylibd 217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  ||  A  ->  -.  A  <  p ) )
6160ancoms 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p ^
1 )  ||  A  ->  -.  A  <  p
) )
6261con2d 118 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A  <  p  ->  -.  ( p ^
1 )  ||  A
) )
63623impia 1202 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  -.  ( p ^ 1 )  ||  A )
64 dvds0 14305 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p ^ 1 )  e.  ZZ  ->  (
p ^ 1 ) 
||  0 )
6544, 64syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  Prime  ->  ( p ^ 1 )  ||  0 )
66653ad2ant2 1027 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  (
p ^ 1 ) 
||  0 )
67 idd 25 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  A )  ->  ( ( p ^ 1 )  ||  0  ->  ( p ^
1 )  ||  A
) ) )
6866, 67mpid 42 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  A )  ->  ( p ^
1 )  ||  A
) )
6963, 68mtod 180 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  -.  ( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  A ) )
70 biimpr 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( p ^ 1 )  ||  A  <->  ( p ^ 1 )  ||  0 )  ->  (
( p ^ 1 )  ||  0  -> 
( p ^ 1 )  ||  A ) )
7169, 70nsyl 124 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  -.  ( ( p ^
1 )  ||  A  <->  ( p ^ 1 ) 
||  0 ) )
72 oveq2 6309 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  1  ->  (
p ^ n )  =  ( p ^
1 ) )
7372breq1d 4430 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  (
( p ^ n
)  ||  A  <->  ( p ^ 1 )  ||  A ) )
7472breq1d 4430 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  (
( p ^ n
)  ||  0  <->  ( p ^ 1 )  ||  0 ) )
7573, 74bibi12d 322 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1  ->  (
( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 )  <->  ( (
p ^ 1 ) 
||  A  <->  ( p ^ 1 )  ||  0 ) ) )
7675notbid 295 . . . . . . . . . . . . . . . 16  |-  ( n  =  1  ->  ( -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 )  <->  -.  (
( p ^ 1 )  ||  A  <->  ( p ^ 1 )  ||  0 ) ) )
7776rspcev 3182 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN  /\  -.  ( ( p ^
1 )  ||  A  <->  ( p ^ 1 ) 
||  0 ) )  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) )
7840, 71, 77sylancr 667 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  0 ) )
79783expia 1207 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A  <  p  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) ) )
8079reximdva 2900 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( E. p  e.  Prime  A  <  p  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) ) )
8139, 80mpd 15 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) )
82 rexnal2 2929 . . . . . . . . . . 11  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  0 )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) )
8381, 82sylib 199 . . . . . . . . . 10  |-  ( A  e.  NN  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  0 ) )
8483pm2.21d 109 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  0 )  ->  A  =  0 ) )
85 breq2 4424 . . . . . . . . . . . 12  |-  ( B  =  0  ->  (
( p ^ n
)  ||  B  <->  ( p ^ n )  ||  0 ) )
8685bibi2d 319 . . . . . . . . . . 11  |-  ( B  =  0  ->  (
( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  0 ) ) )
87862ralbidv 2869 . . . . . . . . . 10  |-  ( B  =  0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  <->  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) ) )
88 eqeq2 2437 . . . . . . . . . 10  |-  ( B  =  0  ->  ( A  =  B  <->  A  = 
0 ) )
8987, 88imbi12d 321 . . . . . . . . 9  |-  ( B  =  0  ->  (
( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )  <->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  0 )  ->  A  =  0 ) ) )
9084, 89syl5ibr 224 . . . . . . . 8  |-  ( B  =  0  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
9138, 90jaoi 380 . . . . . . 7  |-  ( ( B  e.  NN  \/  B  =  0 )  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )  ->  A  =  B ) ) )
925, 91sylbi 198 . . . . . 6  |-  ( B  e.  NN0  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
9392com12 32 . . . . 5  |-  ( A  e.  NN  ->  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
94 orcom 388 . . . . . . . . . 10  |-  ( ( B  e.  NN  \/  B  =  0 )  <-> 
( B  =  0  \/  B  e.  NN ) )
95 df-or 371 . . . . . . . . . 10  |-  ( ( B  =  0  \/  B  e.  NN )  <-> 
( -.  B  =  0  ->  B  e.  NN ) )
965, 94, 953bitri 274 . . . . . . . . 9  |-  ( B  e.  NN0  <->  ( -.  B  =  0  ->  B  e.  NN ) )
97 prmunb 14845 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  E. p  e.  Prime  B  <  p
)
98 dvdsle 14337 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( p ^ 1 )  e.  ZZ  /\  B  e.  NN )  ->  ( ( p ^
1 )  ||  B  ->  ( p ^ 1 )  <_  B )
)
9944, 98sylan 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  ||  B  -> 
( p ^ 1 )  <_  B )
)
100 lenlt 9712 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( p ^ 1 )  e.  RR  /\  B  e.  RR )  ->  ( ( p ^
1 )  <_  B  <->  -.  B  <  ( p ^ 1 ) ) )
10151, 7, 100syl2an 479 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  <_  B  <->  -.  B  <  ( p ^ 1 ) ) )
10255adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
p ^ 1 )  =  p )
103102breq2d 4432 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  ( B  <  ( p ^
1 )  <->  B  <  p ) )
104103notbid 295 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  ( -.  B  <  ( p ^ 1 )  <->  -.  B  <  p ) )
105101, 104bitrd 256 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  <_  B  <->  -.  B  <  p ) )
10699, 105sylibd 217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  ||  B  ->  -.  B  <  p ) )
107106ancoms 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  p  e.  Prime )  -> 
( ( p ^
1 )  ||  B  ->  -.  B  <  p
) )
108107con2d 118 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  p  e.  Prime )  -> 
( B  <  p  ->  -.  ( p ^
1 )  ||  B
) )
1091083impia 1202 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  -.  ( p ^ 1 )  ||  B )
110653ad2ant2 1027 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  (
p ^ 1 ) 
||  0 )
111 idd 25 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B )  ->  ( ( p ^ 1 )  ||  0  ->  ( p ^
1 )  ||  B
) ) )
112110, 111mpid 42 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B )  ->  ( p ^
1 )  ||  B
) )
113109, 112mtod 180 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  -.  ( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B ) )
114 biimp 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( p ^ 1 )  ||  0  <->  (
p ^ 1 ) 
||  B )  -> 
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B ) )
115113, 114nsyl 124 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  -.  ( ( p ^
1 )  ||  0  <->  ( p ^ 1 ) 
||  B ) )
11672breq1d 4430 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  (
( p ^ n
)  ||  B  <->  ( p ^ 1 )  ||  B ) )
11774, 116bibi12d 322 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1  ->  (
( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ 1 ) 
||  0  <->  ( p ^ 1 )  ||  B ) ) )
118117notbid 295 . . . . . . . . . . . . . . . 16  |-  ( n  =  1  ->  ( -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B )  <->  -.  (
( p ^ 1 )  ||  0  <->  (
p ^ 1 ) 
||  B ) ) )
119118rspcev 3182 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN  /\  -.  ( ( p ^
1 )  ||  0  <->  ( p ^ 1 ) 
||  B ) )  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) )
12040, 115, 119sylancr 667 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  E. n  e.  NN  -.  ( ( p ^ n ) 
||  0  <->  ( p ^ n )  ||  B ) )
1211203expia 1207 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  p  e.  Prime )  -> 
( B  <  p  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) ) )
122121reximdva 2900 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  ( E. p  e.  Prime  B  <  p  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) ) )
12397, 122mpd 15 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) )
124 rexnal2 2929 . . . . . . . . . . 11  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  0  <->  ( p ^ n )  ||  B )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) )
125123, 124sylib 199 . . . . . . . . . 10  |-  ( B  e.  NN  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )
)
126125imim2i 16 . . . . . . . . 9  |-  ( ( -.  B  =  0  ->  B  e.  NN )  ->  ( -.  B  =  0  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )
) )
12796, 126sylbi 198 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( -.  B  =  0  ->  -.  A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  0  <->  ( p ^ n )  ||  B ) ) )
128127con4d 108 . . . . . . 7  |-  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )  ->  B  =  0 ) )
129 eqcom 2431 . . . . . . 7  |-  ( B  =  0  <->  0  =  B )
130128, 129syl6ib 229 . . . . . 6  |-  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )  ->  0  =  B ) )
131 breq2 4424 . . . . . . . . 9  |-  ( A  =  0  ->  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  0 ) )
132131bibi1d 320 . . . . . . . 8  |-  ( A  =  0  ->  (
( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ n ) 
||  0  <->  ( p ^ n )  ||  B ) ) )
1331322ralbidv 2869 . . . . . . 7  |-  ( A  =  0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  <->  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) ) )
134 eqeq1 2426 . . . . . . 7  |-  ( A  =  0  ->  ( A  =  B  <->  0  =  B ) )
135133, 134imbi12d 321 . . . . . 6  |-  ( A  =  0  ->  (
( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )  <->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  0  <->  ( p ^ n )  ||  B )  ->  0  =  B ) ) )
136130, 135syl5ibr 224 . . . . 5  |-  ( A  =  0  ->  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
13793, 136jaoi 380 . . . 4  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ( B  e. 
NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )
) )
138137imp 430 . . 3  |-  ( ( ( A  e.  NN  \/  A  =  0
)  /\  B  e.  NN0 )  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )  ->  A  =  B ) )
1394, 138sylanb 474 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )
)
1403, 139impbid2 207 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  =  B  <->  A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776   class class class wbr 4420  (class class class)co 6301   RRcr 9538   0cc0 9539   1c1 9540    < clt 9675    <_ cle 9676   NNcn 10609   NN0cn0 10869   ZZcz 10937   ^cexp 12271    || cdvds 14292   Primecprime 14609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-sup 7958  df-inf 7959  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fl 12027  df-mod 12096  df-seq 12213  df-exp 12272  df-fac 12459  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-dvds 14293  df-gcd 14456  df-prm 14610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator