MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthi Structured version   Unicode version

Theorem nn0opthi 12166
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3993 that works for any set. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Scott Fenton, 8-Sep-2010.)
Hypotheses
Ref Expression
nn0opth.1  |-  A  e. 
NN0
nn0opth.2  |-  B  e. 
NN0
nn0opth.3  |-  C  e. 
NN0
nn0opth.4  |-  D  e. 
NN0
Assertion
Ref Expression
nn0opthi  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem nn0opthi
StepHypRef Expression
1 nn0opth.1 . . . . . . . . . 10  |-  A  e. 
NN0
2 nn0opth.2 . . . . . . . . . 10  |-  B  e. 
NN0
31, 2nn0addcli 10729 . . . . . . . . 9  |-  ( A  +  B )  e. 
NN0
43nn0rei 10702 . . . . . . . 8  |-  ( A  +  B )  e.  RR
5 nn0opth.3 . . . . . . . . . 10  |-  C  e. 
NN0
6 nn0opth.4 . . . . . . . . . 10  |-  D  e. 
NN0
75, 6nn0addcli 10729 . . . . . . . . 9  |-  ( C  +  D )  e. 
NN0
87nn0rei 10702 . . . . . . . 8  |-  ( C  +  D )  e.  RR
94, 8lttri2i 9600 . . . . . . 7  |-  ( ( A  +  B )  =/=  ( C  +  D )  <->  ( ( A  +  B )  <  ( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) ) )
101, 2, 7, 6nn0opthlem2 12165 . . . . . . . . 9  |-  ( ( A  +  B )  <  ( C  +  D )  ->  (
( ( C  +  D )  x.  ( C  +  D )
)  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) )
1110necomd 2723 . . . . . . . 8  |-  ( ( A  +  B )  <  ( C  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
125, 6, 3, 2nn0opthlem2 12165 . . . . . . . 8  |-  ( ( C  +  D )  <  ( A  +  B )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
1311, 12jaoi 379 . . . . . . 7  |-  ( ( ( A  +  B
)  <  ( C  +  D )  \/  ( C  +  D )  <  ( A  +  B
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
149, 13sylbi 195 . . . . . 6  |-  ( ( A  +  B )  =/=  ( C  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
1514necon4i 2696 . . . . 5  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  ( A  +  B )  =  ( C  +  D ) )
16 id 22 . . . . . . . 8  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
1715, 15oveq12d 6219 . . . . . . . . 9  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  (
( A  +  B
)  x.  ( A  +  B ) )  =  ( ( C  +  D )  x.  ( C  +  D
) ) )
1817oveq1d 6216 . . . . . . . 8  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  D )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
1916, 18eqtr4d 2498 . . . . . . 7  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  D ) )
203nn0cni 10703 . . . . . . . . 9  |-  ( A  +  B )  e.  CC
2120, 20mulcli 9503 . . . . . . . 8  |-  ( ( A  +  B )  x.  ( A  +  B ) )  e.  CC
222nn0cni 10703 . . . . . . . 8  |-  B  e.  CC
236nn0cni 10703 . . . . . . . 8  |-  D  e.  CC
2421, 22, 23addcani 9674 . . . . . . 7  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  D )  <->  B  =  D )
2519, 24sylib 196 . . . . . 6  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  B  =  D )
2625oveq2d 6217 . . . . 5  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  ( C  +  B )  =  ( C  +  D ) )
2715, 26eqtr4d 2498 . . . 4  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  ( A  +  B )  =  ( C  +  B ) )
281nn0cni 10703 . . . . 5  |-  A  e.  CC
295nn0cni 10703 . . . . 5  |-  C  e.  CC
3028, 29, 22addcan2i 9675 . . . 4  |-  ( ( A  +  B )  =  ( C  +  B )  <->  A  =  C )
3127, 30sylib 196 . . 3  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  A  =  C )
3231, 25jca 532 . 2  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  ->  ( A  =  C  /\  B  =  D )
)
33 oveq12 6210 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +  B
)  =  ( C  +  D ) )
3433, 33oveq12d 6219 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( C  +  D )  x.  ( C  +  D ) ) )
35 simpr 461 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  B  =  D )
3634, 35oveq12d 6219 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) )
3732, 36impbii 188 1  |-  ( ( ( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D )  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4401  (class class class)co 6201    + caddc 9397    x. cmul 9399    < clt 9530   NN0cn0 10691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-2nd 6689  df-recs 6943  df-rdg 6977  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-2 10492  df-n0 10692  df-z 10759  df-uz 10974  df-seq 11925  df-exp 11984
This theorem is referenced by:  nn0opth2i  12167
  Copyright terms: Public domain W3C validator