MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0mulcld Structured version   Unicode version

Theorem nn0mulcld 10742
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1  |-  ( ph  ->  A  e.  NN0 )
nn0addcld.2  |-  ( ph  ->  B  e.  NN0 )
Assertion
Ref Expression
nn0mulcld  |-  ( ph  ->  ( A  x.  B
)  e.  NN0 )

Proof of Theorem nn0mulcld
StepHypRef Expression
1 nn0red.1 . 2  |-  ( ph  ->  A  e.  NN0 )
2 nn0addcld.2 . 2  |-  ( ph  ->  B  e.  NN0 )
3 nn0mulcl 10717 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  x.  B
)  e.  NN0 )
41, 2, 3syl2anc 661 1  |-  ( ph  ->  ( A  x.  B
)  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1758  (class class class)co 6190    x. cmul 9388   NN0cn0 10680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-om 6577  df-recs 6932  df-rdg 6966  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-ltxr 9524  df-nn 10424  df-n0 10681
This theorem is referenced by:  quoremnn0ALT  11797  expmulz  12011  faclbnd4lem3  12172  mulgcd  13832  rpmulgcd2  13893  odzdvds  13969  prmreclem3  14081  vdwapf  14135  vdwlem5  14148  vdwlem6  14149  odmodnn0  16147  odmulg  16161  odadd  16436  ablfacrplem  16671  ablfacrp2  16673  dchrisumlem1  22854  eulerpartlemsv2  26875  eulerpartlemsf  26876  eulerpartlems  26877  eulerpartlemv  26881  eulerpartlemb  26885  erdsze2lem1  27225  erdsze2lem2  27226  pell1qrge1  29349  jm2.27c  29494  rmxdiophlem  29502  hashgcdlem  29703  m1expeven  29910  stoweidlem1  29934  wallispilem4  30001  wallispilem5  30002  wallispi2lem2  30005  stirlinglem3  30009  stirlinglem5  30011  stirlinglem7  30013  stirlinglem10  30016  stirlinglem11  30017  ply1mulgsumlem2  30987
  Copyright terms: Public domain W3C validator