MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0mulcl Structured version   Unicode version

Theorem nn0mulcl 10637
Description: Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
nn0mulcl  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )

Proof of Theorem nn0mulcl
StepHypRef Expression
1 nnsscn 10348 . 2  |-  NN  C_  CC
2 id 22 . . 3  |-  ( NN  C_  CC  ->  NN  C_  CC )
3 df-n0 10601 . . 3  |-  NN0  =  ( NN  u.  { 0 } )
4 nnmulcl 10366 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  x.  N
)  e.  NN )
54adantl 466 . . 3  |-  ( ( NN  C_  CC  /\  ( M  e.  NN  /\  N  e.  NN ) )  -> 
( M  x.  N
)  e.  NN )
62, 3, 5un0mulcl 10635 . 2  |-  ( ( NN  C_  CC  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( M  x.  N
)  e.  NN0 )
71, 6mpan 670 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756    C_ wss 3349  (class class class)co 6112   CCcc 9301    x. cmul 9308   NNcn 10343   NN0cn0 10600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-om 6498  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-ltxr 9444  df-nn 10344  df-n0 10601
This theorem is referenced by:  nn0mulcli  10639  nn0mulcld  10662  zmulcl  10714  nn0expcl  11900  expmul  11930  expmulnbnd  12017  iseraltlem2  13181  iseraltlem3  13182  crt  13874  iserodd  13923  vdwlem8  14070  nn0srg  17903  elqaalem2  21808  atantayl3  22356  leibpilem2  22358  leibpi  22359  leibpisum  22360  log2cnv  22361  log2tlbnd  22362  log2ublem2  22364  log2ub  22366  basellem3  22442  chtublem  22572  bcmax  22639  bcp1ctr  22640  bclbnd  22641  dchrisumlem1  22760  fprodnn0cl  27492  nn0risefaccl  27547
  Copyright terms: Public domain W3C validator