MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ennn Structured version   Unicode version

Theorem nn0ennn 11801
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn  |-  NN0  ~~  NN

Proof of Theorem nn0ennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 10585 . 2  |-  NN0  e.  _V
2 nnex 10328 . 2  |-  NN  e.  _V
3 nn0p1nn 10619 . 2  |-  ( x  e.  NN0  ->  ( x  +  1 )  e.  NN )
4 nnm1nn0 10621 . 2  |-  ( y  e.  NN  ->  (
y  -  1 )  e.  NN0 )
5 nncn 10330 . . 3  |-  ( y  e.  NN  ->  y  e.  CC )
6 nn0cn 10589 . . 3  |-  ( x  e.  NN0  ->  x  e.  CC )
7 ax-1cn 9340 . . . . . 6  |-  1  e.  CC
8 subadd 9613 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC  /\  x  e.  CC )  ->  (
( y  -  1 )  =  x  <->  ( 1  +  x )  =  y ) )
97, 8mp3an2 1302 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( ( y  - 
1 )  =  x  <-> 
( 1  +  x
)  =  y ) )
10 eqcom 2445 . . . . 5  |-  ( x  =  ( y  - 
1 )  <->  ( y  -  1 )  =  x )
11 eqcom 2445 . . . . 5  |-  ( y  =  ( 1  +  x )  <->  ( 1  +  x )  =  y )
129, 10, 113bitr4g 288 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( 1  +  x ) ) )
13 addcom 9555 . . . . . . 7  |-  ( ( 1  e.  CC  /\  x  e.  CC )  ->  ( 1  +  x
)  =  ( x  +  1 ) )
147, 13mpan 670 . . . . . 6  |-  ( x  e.  CC  ->  (
1  +  x )  =  ( x  + 
1 ) )
1514eqeq2d 2454 . . . . 5  |-  ( x  e.  CC  ->  (
y  =  ( 1  +  x )  <->  y  =  ( x  +  1
) ) )
1615adantl 466 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  =  ( 1  +  x )  <-> 
y  =  ( x  +  1 ) ) )
1712, 16bitrd 253 . . 3  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
185, 6, 17syl2anr 478 . 2  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
191, 2, 3, 4, 18en3i 7348 1  |-  NN0  ~~  NN
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4292  (class class class)co 6091    ~~ cen 7307   CCcc 9280   1c1 9283    + caddc 9285    - cmin 9595   NNcn 10322   NN0cn0 10579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-ltxr 9423  df-sub 9597  df-nn 10323  df-n0 10580
This theorem is referenced by:  nnenom  11802  bitsf1  13642  dyadmbl  21080  aannenlem3  21796  heiborlem3  28712  heibor  28720
  Copyright terms: Public domain W3C validator