MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmzsubg Structured version   Unicode version

Theorem nmzsubg 16369
Description: The normalizer NG(S) of a subset  S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
nmzsubg  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
Distinct variable groups:    x, y, G    x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    N( x, y)

Proof of Theorem nmzsubg
Dummy variables  z  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
2 ssrab2 3581 . . . 4  |-  { x  e.  X  |  A. y  e.  X  (
( x  .+  y
)  e.  S  <->  ( y  .+  x )  e.  S
) }  C_  X
31, 2eqsstri 3529 . . 3  |-  N  C_  X
43a1i 11 . 2  |-  ( G  e.  Grp  ->  N  C_  X )
5 nmzsubg.2 . . . . 5  |-  X  =  ( Base `  G
)
6 eqid 2457 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
75, 6grpidcl 16205 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
8 nmzsubg.3 . . . . . . . 8  |-  .+  =  ( +g  `  G )
95, 8, 6grplid 16207 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G )  .+  z
)  =  z )
105, 8, 6grprid 16208 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( z  .+  ( 0g `  G ) )  =  z )
119, 10eqtr4d 2501 . . . . . 6  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G )  .+  z
)  =  ( z 
.+  ( 0g `  G ) ) )
1211eleq1d 2526 . . . . 5  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( ( 0g
`  G )  .+  z )  e.  S  <->  ( z  .+  ( 0g
`  G ) )  e.  S ) )
1312ralrimiva 2871 . . . 4  |-  ( G  e.  Grp  ->  A. z  e.  X  ( (
( 0g `  G
)  .+  z )  e.  S  <->  ( z  .+  ( 0g `  G ) )  e.  S ) )
141elnmz 16367 . . . 4  |-  ( ( 0g `  G )  e.  N  <->  ( ( 0g `  G )  e.  X  /\  A. z  e.  X  ( (
( 0g `  G
)  .+  z )  e.  S  <->  ( z  .+  ( 0g `  G ) )  e.  S ) ) )
157, 13, 14sylanbrc 664 . . 3  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  N )
16 ne0i 3799 . . 3  |-  ( ( 0g `  G )  e.  N  ->  N  =/=  (/) )
1715, 16syl 16 . 2  |-  ( G  e.  Grp  ->  N  =/=  (/) )
18 id 22 . . . . . . . 8  |-  ( G  e.  Grp  ->  G  e.  Grp )
193sseli 3495 . . . . . . . 8  |-  ( z  e.  N  ->  z  e.  X )
203sseli 3495 . . . . . . . 8  |-  ( w  e.  N  ->  w  e.  X )
215, 8grpcl 16190 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  z  e.  X  /\  w  e.  X )  ->  ( z  .+  w
)  e.  X )
2218, 19, 20, 21syl3an 1270 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  ->  ( z  .+  w
)  e.  X )
23 simpl1 999 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  G  e.  Grp )
24 simpl2 1000 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  z  e.  N )
253, 24sseldi 3497 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  z  e.  X )
26 simpl3 1001 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  w  e.  N )
273, 26sseldi 3497 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  w  e.  X )
28 simpr 461 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  u  e.  X )
295, 8grpass 16191 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( z  e.  X  /\  w  e.  X  /\  u  e.  X
) )  ->  (
( z  .+  w
)  .+  u )  =  ( z  .+  ( w  .+  u ) ) )
3023, 25, 27, 28, 29syl13anc 1230 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  w )  .+  u )  =  ( z  .+  ( w 
.+  u ) ) )
3130eleq1d 2526 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( z  .+  w
)  .+  u )  e.  S  <->  ( z  .+  ( w  .+  u ) )  e.  S ) )
325, 8grpcl 16190 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  u  e.  X )  ->  ( w  .+  u
)  e.  X )
3323, 27, 28, 32syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( w  .+  u )  e.  X
)
341nmzbi 16368 . . . . . . . . . . 11  |-  ( ( z  e.  N  /\  ( w  .+  u )  e.  X )  -> 
( ( z  .+  ( w  .+  u ) )  e.  S  <->  ( (
w  .+  u )  .+  z )  e.  S
) )
3524, 33, 34syl2anc 661 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( w  .+  u ) )  e.  S  <->  ( ( w 
.+  u )  .+  z )  e.  S
) )
365, 8grpass 16191 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( w  e.  X  /\  u  e.  X  /\  z  e.  X
) )  ->  (
( w  .+  u
)  .+  z )  =  ( w  .+  ( u  .+  z ) ) )
3723, 27, 28, 25, 36syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
w  .+  u )  .+  z )  =  ( w  .+  ( u 
.+  z ) ) )
3837eleq1d 2526 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( w  .+  u
)  .+  z )  e.  S  <->  ( w  .+  ( u  .+  z ) )  e.  S ) )
395, 8grpcl 16190 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  z  e.  X )  ->  ( u  .+  z
)  e.  X )
4023, 28, 25, 39syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( u  .+  z )  e.  X
)
411nmzbi 16368 . . . . . . . . . . 11  |-  ( ( w  e.  N  /\  ( u  .+  z )  e.  X )  -> 
( ( w  .+  ( u  .+  z ) )  e.  S  <->  ( (
u  .+  z )  .+  w )  e.  S
) )
4226, 40, 41syl2anc 661 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
w  .+  ( u  .+  z ) )  e.  S  <->  ( ( u 
.+  z )  .+  w )  e.  S
) )
4335, 38, 423bitrd 279 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( w  .+  u ) )  e.  S  <->  ( ( u 
.+  z )  .+  w )  e.  S
) )
445, 8grpass 16191 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( u  e.  X  /\  z  e.  X  /\  w  e.  X
) )  ->  (
( u  .+  z
)  .+  w )  =  ( u  .+  ( z  .+  w
) ) )
4523, 28, 25, 27, 44syl13anc 1230 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
u  .+  z )  .+  w )  =  ( u  .+  ( z 
.+  w ) ) )
4645eleq1d 2526 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( u  .+  z
)  .+  w )  e.  S  <->  ( u  .+  ( z  .+  w
) )  e.  S
) )
4731, 43, 463bitrd 279 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  /\  u  e.  X
)  ->  ( (
( z  .+  w
)  .+  u )  e.  S  <->  ( u  .+  ( z  .+  w
) )  e.  S
) )
4847ralrimiva 2871 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  ->  A. u  e.  X  ( ( ( z 
.+  w )  .+  u )  e.  S  <->  ( u  .+  ( z 
.+  w ) )  e.  S ) )
491elnmz 16367 . . . . . . 7  |-  ( ( z  .+  w )  e.  N  <->  ( (
z  .+  w )  e.  X  /\  A. u  e.  X  ( (
( z  .+  w
)  .+  u )  e.  S  <->  ( u  .+  ( z  .+  w
) )  e.  S
) ) )
5022, 48, 49sylanbrc 664 . . . . . 6  |-  ( ( G  e.  Grp  /\  z  e.  N  /\  w  e.  N )  ->  ( z  .+  w
)  e.  N )
51503expa 1196 . . . . 5  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  w  e.  N
)  ->  ( z  .+  w )  e.  N
)
5251ralrimiva 2871 . . . 4  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  A. w  e.  N  ( z  .+  w
)  e.  N )
53 eqid 2457 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
545, 53grpinvcl 16222 . . . . . 6  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( invg `  G ) `  z
)  e.  X )
5519, 54sylan2 474 . . . . 5  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  ( ( invg `  G ) `  z
)  e.  X )
56 simplr 755 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  z  e.  N )
57 simpll 753 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  G  e.  Grp )
5855adantr 465 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( ( invg `  G ) `
 z )  e.  X )
59 simpr 461 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  u  e.  X )
605, 8grpcl 16190 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  ( ( invg `  G ) `  z
)  e.  X )  ->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  X
)
6157, 59, 58, 60syl3anc 1228 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  X
)
625, 8grpcl 16190 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  z
)  e.  X  /\  ( u  .+  ( ( invg `  G
) `  z )
)  e.  X )  ->  ( ( ( invg `  G
) `  z )  .+  ( u  .+  (
( invg `  G ) `  z
) ) )  e.  X )
6357, 58, 61, 62syl3anc 1228 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  e.  X )
641nmzbi 16368 . . . . . . . 8  |-  ( ( z  e.  N  /\  ( ( ( invg `  G ) `
 z )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  e.  X
)  ->  ( (
z  .+  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) )  e.  S  <->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  e.  S
) )
6556, 63, 64syl2anc 661 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) )  e.  S  <->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  e.  S
) )
663, 56sseldi 3497 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  z  e.  X )
675, 8, 6, 53grprinv 16224 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( z  .+  (
( invg `  G ) `  z
) )  =  ( 0g `  G ) )
6857, 66, 67syl2anc 661 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( z  .+  ( ( invg `  G ) `  z
) )  =  ( 0g `  G ) )
6968oveq1d 6311 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( ( invg `  G ) `
 z ) ) 
.+  ( u  .+  ( ( invg `  G ) `  z
) ) )  =  ( ( 0g `  G )  .+  (
u  .+  ( ( invg `  G ) `
 z ) ) ) )
705, 8grpass 16191 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( z  e.  X  /\  ( ( invg `  G ) `  z
)  e.  X  /\  ( u  .+  ( ( invg `  G
) `  z )
)  e.  X ) )  ->  ( (
z  .+  ( ( invg `  G ) `
 z ) ) 
.+  ( u  .+  ( ( invg `  G ) `  z
) ) )  =  ( z  .+  (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) ) )
7157, 66, 58, 61, 70syl13anc 1230 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( ( invg `  G ) `
 z ) ) 
.+  ( u  .+  ( ( invg `  G ) `  z
) ) )  =  ( z  .+  (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) ) )
725, 8, 6grplid 16207 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( u  .+  ( ( invg `  G
) `  z )
)  e.  X )  ->  ( ( 0g
`  G )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  =  ( u  .+  ( ( invg `  G
) `  z )
) )
7357, 61, 72syl2anc 661 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( ( 0g `  G )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  =  ( u  .+  ( ( invg `  G
) `  z )
) )
7469, 71, 733eqtr3d 2506 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( z  .+  ( ( ( invg `  G ) `
 z )  .+  ( u  .+  ( ( invg `  G
) `  z )
) ) )  =  ( u  .+  (
( invg `  G ) `  z
) ) )
7574eleq1d 2526 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
z  .+  ( (
( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) ) )  e.  S  <->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  S
) )
765, 8grpass 16191 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 z )  e.  X  /\  ( u 
.+  ( ( invg `  G ) `
 z ) )  e.  X  /\  z  e.  X ) )  -> 
( ( ( ( invg `  G
) `  z )  .+  ( u  .+  (
( invg `  G ) `  z
) ) )  .+  z )  =  ( ( ( invg `  G ) `  z
)  .+  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z ) ) )
7757, 58, 61, 66, 76syl13anc 1230 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  =  ( ( ( invg `  G ) `  z
)  .+  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z ) ) )
785, 8grpass 16191 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( u  e.  X  /\  ( ( invg `  G ) `  z
)  e.  X  /\  z  e.  X )
)  ->  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z )  =  ( u  .+  (
( ( invg `  G ) `  z
)  .+  z )
) )
7957, 59, 58, 66, 78syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z )  =  ( u  .+  (
( ( invg `  G ) `  z
)  .+  z )
) )
805, 8, 6, 53grplinv 16223 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( ( invg `  G ) `
 z )  .+  z )  =  ( 0g `  G ) )
8157, 66, 80syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( invg `  G ) `  z
)  .+  z )  =  ( 0g `  G ) )
8281oveq2d 6312 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( u  .+  ( ( ( invg `  G ) `
 z )  .+  z ) )  =  ( u  .+  ( 0g `  G ) ) )
835, 8, 6grprid 16208 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  u  e.  X )  ->  ( u  .+  ( 0g `  G ) )  =  u )
8457, 59, 83syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( u  .+  ( 0g `  G
) )  =  u )
8579, 82, 843eqtrd 2502 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z )  =  u )
8685oveq2d 6312 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( invg `  G ) `  z
)  .+  ( (
u  .+  ( ( invg `  G ) `
 z ) ) 
.+  z ) )  =  ( ( ( invg `  G
) `  z )  .+  u ) )
8777, 86eqtrd 2498 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( invg `  G ) `  z
)  .+  ( u  .+  ( ( invg `  G ) `  z
) ) )  .+  z )  =  ( ( ( invg `  G ) `  z
)  .+  u )
)
8887eleq1d 2526 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( ( invg `  G ) `
 z )  .+  ( u  .+  ( ( invg `  G
) `  z )
) )  .+  z
)  e.  S  <->  ( (
( invg `  G ) `  z
)  .+  u )  e.  S ) )
8965, 75, 883bitr3rd 284 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  z  e.  N )  /\  u  e.  X
)  ->  ( (
( ( invg `  G ) `  z
)  .+  u )  e.  S  <->  ( u  .+  ( ( invg `  G ) `  z
) )  e.  S
) )
9089ralrimiva 2871 . . . . 5  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  A. u  e.  X  ( ( ( ( invg `  G
) `  z )  .+  u )  e.  S  <->  ( u  .+  ( ( invg `  G
) `  z )
)  e.  S ) )
911elnmz 16367 . . . . 5  |-  ( ( ( invg `  G ) `  z
)  e.  N  <->  ( (
( invg `  G ) `  z
)  e.  X  /\  A. u  e.  X  ( ( ( ( invg `  G ) `
 z )  .+  u )  e.  S  <->  ( u  .+  ( ( invg `  G
) `  z )
)  e.  S ) ) )
9255, 90, 91sylanbrc 664 . . . 4  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  ( ( invg `  G ) `  z
)  e.  N )
9352, 92jca 532 . . 3  |-  ( ( G  e.  Grp  /\  z  e.  N )  ->  ( A. w  e.  N  ( z  .+  w )  e.  N  /\  ( ( invg `  G ) `  z
)  e.  N ) )
9493ralrimiva 2871 . 2  |-  ( G  e.  Grp  ->  A. z  e.  N  ( A. w  e.  N  (
z  .+  w )  e.  N  /\  (
( invg `  G ) `  z
)  e.  N ) )
955, 8, 53issubg2 16343 . 2  |-  ( G  e.  Grp  ->  ( N  e.  (SubGrp `  G
)  <->  ( N  C_  X  /\  N  =/=  (/)  /\  A. z  e.  N  ( A. w  e.  N  ( z  .+  w
)  e.  N  /\  ( ( invg `  G ) `  z
)  e.  N ) ) ) )
964, 17, 94, 95mpbir3and 1179 1  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811    C_ wss 3471   (/)c0 3793   ` cfv 5594  (class class class)co 6296   Basecbs 14644   +g cplusg 14712   0gc0g 14857   Grpcgrp 16180   invgcminusg 16181  SubGrpcsubg 16322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-grp 16184  df-minusg 16185  df-subg 16325
This theorem is referenced by:  nmznsg  16372  sylow3lem3  16776  sylow3lem4  16777  sylow3lem6  16779
  Copyright terms: Public domain W3C validator