MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd Structured version   Unicode version

Theorem nmpropd 21199
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
nmpropd.2  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  L ) )
nmpropd.3  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  L ) )
Assertion
Ref Expression
nmpropd  |-  ( ph  ->  ( norm `  K
)  =  ( norm `  L ) )

Proof of Theorem nmpropd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmpropd.1 . . 3  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
2 nmpropd.3 . . . 4  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  L ) )
3 eqidd 2383 . . . 4  |-  ( ph  ->  x  =  x )
4 eqidd 2383 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  K ) )
5 nmpropd.2 . . . . . 6  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  L ) )
65oveqdr 6220 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
74, 1, 6grpidpropd 16005 . . . 4  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
82, 3, 7oveq123d 6217 . . 3  |-  ( ph  ->  ( x ( dist `  K ) ( 0g
`  K ) )  =  ( x (
dist `  L )
( 0g `  L
) ) )
91, 8mpteq12dv 4445 . 2  |-  ( ph  ->  ( x  e.  (
Base `  K )  |->  ( x ( dist `  K ) ( 0g
`  K ) ) )  =  ( x  e.  ( Base `  L
)  |->  ( x (
dist `  L )
( 0g `  L
) ) ) )
10 eqid 2382 . . 3  |-  ( norm `  K )  =  (
norm `  K )
11 eqid 2382 . . 3  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2382 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
13 eqid 2382 . . 3  |-  ( dist `  K )  =  (
dist `  K )
1410, 11, 12, 13nmfval 21194 . 2  |-  ( norm `  K )  =  ( x  e.  ( Base `  K )  |->  ( x ( dist `  K
) ( 0g `  K ) ) )
15 eqid 2382 . . 3  |-  ( norm `  L )  =  (
norm `  L )
16 eqid 2382 . . 3  |-  ( Base `  L )  =  (
Base `  L )
17 eqid 2382 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
18 eqid 2382 . . 3  |-  ( dist `  L )  =  (
dist `  L )
1915, 16, 17, 18nmfval 21194 . 2  |-  ( norm `  L )  =  ( x  e.  ( Base `  L )  |->  ( x ( dist `  L
) ( 0g `  L ) ) )
209, 14, 193eqtr4g 2448 1  |-  ( ph  ->  ( norm `  K
)  =  ( norm `  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    |-> cmpt 4425   ` cfv 5496  (class class class)co 6196   Basecbs 14634   +g cplusg 14702   distcds 14711   0gc0g 14847   normcnm 21182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-fv 5504  df-ov 6199  df-0g 14849  df-nm 21188
This theorem is referenced by:  sranlm  21278  zlmnm  28100
  Copyright terms: Public domain W3C validator