MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbseqiOLD Structured version   Unicode version

Theorem nmounbseqiOLD 25357
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOpOLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmounbseqiOLD  |-  ( ( T : X --> Y  /\  ( N `  T )  = +oo )  ->  E. f ( f : NN --> X  /\  A. k  e.  NN  (
( L `  (
f `  k )
)  <_  1  /\  k  <  ( M `  ( T `  ( f `
 k ) ) ) ) ) )
Distinct variable groups:    f, k, L    k, Y    f, M, k    T, f, k    f, X, k    k, N
Allowed substitution hints:    U( f, k)    N( f)    W( f, k)    Y( f)

Proof of Theorem nmounbseqiOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nmoubi.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 nmoubi.y . . . 4  |-  Y  =  ( BaseSet `  W )
3 nmoubi.l . . . 4  |-  L  =  ( normCV `  U )
4 nmoubi.m . . . 4  |-  M  =  ( normCV `  W )
5 nmoubi.3 . . . 4  |-  N  =  ( U normOpOLD W
)
6 nmoubi.u . . . 4  |-  U  e.  NrmCVec
7 nmoubi.w . . . 4  |-  W  e.  NrmCVec
81, 2, 3, 4, 5, 6, 7nmounbi 25355 . . 3  |-  ( T : X --> Y  -> 
( ( N `  T )  = +oo  <->  A. k  e.  RR  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  < 
( M `  ( T `  y )
) ) ) )
98biimpa 484 . 2  |-  ( ( T : X --> Y  /\  ( N `  T )  = +oo )  ->  A. k  e.  RR  E. y  e.  X  ( ( L `  y
)  <_  1  /\  k  <  ( M `  ( T `  y ) ) ) )
10 nnre 10534 . . . 4  |-  ( k  e.  NN  ->  k  e.  RR )
1110imim1i 58 . . 3  |-  ( ( k  e.  RR  ->  E. y  e.  X  ( ( L `  y
)  <_  1  /\  k  <  ( M `  ( T `  y ) ) ) )  -> 
( k  e.  NN  ->  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  <  ( M `
 ( T `  y ) ) ) ) )
1211ralimi2 2849 . 2  |-  ( A. k  e.  RR  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  < 
( M `  ( T `  y )
) )  ->  A. k  e.  NN  E. y  e.  X  ( ( L `
 y )  <_ 
1  /\  k  <  ( M `  ( T `
 y ) ) ) )
13 nnex 10533 . . 3  |-  NN  e.  _V
14 fveq2 5859 . . . . 5  |-  ( y  =  ( f `  k )  ->  ( L `  y )  =  ( L `  ( f `  k
) ) )
1514breq1d 4452 . . . 4  |-  ( y  =  ( f `  k )  ->  (
( L `  y
)  <_  1  <->  ( L `  ( f `  k
) )  <_  1
) )
16 fveq2 5859 . . . . . 6  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
1716fveq2d 5863 . . . . 5  |-  ( y  =  ( f `  k )  ->  ( M `  ( T `  y ) )  =  ( M `  ( T `  ( f `  k ) ) ) )
1817breq2d 4454 . . . 4  |-  ( y  =  ( f `  k )  ->  (
k  <  ( M `  ( T `  y
) )  <->  k  <  ( M `  ( T `
 ( f `  k ) ) ) ) )
1915, 18anbi12d 710 . . 3  |-  ( y  =  ( f `  k )  ->  (
( ( L `  y )  <_  1  /\  k  <  ( M `
 ( T `  y ) ) )  <-> 
( ( L `  ( f `  k
) )  <_  1  /\  k  <  ( M `
 ( T `  ( f `  k
) ) ) ) ) )
2013, 19ac6s 8855 . 2  |-  ( A. k  e.  NN  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  < 
( M `  ( T `  y )
) )  ->  E. f
( f : NN --> X  /\  A. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  /\  k  <  ( M `  ( T `
 ( f `  k ) ) ) ) ) )
219, 12, 203syl 20 1  |-  ( ( T : X --> Y  /\  ( N `  T )  = +oo )  ->  E. f ( f : NN --> X  /\  A. k  e.  NN  (
( L `  (
f `  k )
)  <_  1  /\  k  <  ( M `  ( T `  ( f `
 k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   A.wral 2809   E.wrex 2810   class class class wbr 4442   -->wf 5577   ` cfv 5581  (class class class)co 6277   RRcr 9482   1c1 9484   +oocpnf 9616    < clt 9619    <_ cle 9620   NNcn 10527   NrmCVeccnv 25141   BaseSetcba 25143   normCVcnmcv 25147   normOpOLDcnmoo 25320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-reg 8009  ax-inf2 8049  ax-ac2 8834  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7509  df-dom 7510  df-sdom 7511  df-sup 7892  df-r1 8173  df-rank 8174  df-card 8311  df-ac 8488  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-n0 10787  df-z 10856  df-uz 11074  df-rp 11212  df-seq 12066  df-exp 12125  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021  df-grpo 24857  df-gid 24858  df-ginv 24859  df-ablo 24948  df-vc 25103  df-nv 25149  df-va 25152  df-ba 25153  df-sm 25154  df-0v 25155  df-nmcv 25157  df-nmoo 25324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator