MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Unicode version

Theorem nmoubi 24323
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOpOLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmoubi  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) ) )
Distinct variable groups:    x, A    x, L    x, U    x, W    x, Y    x, M    x, T    x, X
Allowed substitution hint:    N( x)

Proof of Theorem nmoubi
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6  |-  U  e.  NrmCVec
2 nmoubi.w . . . . . 6  |-  W  e.  NrmCVec
3 nmoubi.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
4 nmoubi.y . . . . . . 7  |-  Y  =  ( BaseSet `  W )
5 nmoubi.l . . . . . . 7  |-  L  =  ( normCV `  U )
6 nmoubi.m . . . . . . 7  |-  M  =  ( normCV `  W )
7 nmoubi.3 . . . . . . 7  |-  N  =  ( U normOpOLD W
)
83, 4, 5, 6, 7nmooval 24314 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { y  |  E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  y  =  ( M `  ( T `
 x ) ) ) } ,  RR* ,  <  ) )
91, 2, 8mp3an12 1305 . . . . 5  |-  ( T : X --> Y  -> 
( N `  T
)  =  sup ( { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } ,  RR* ,  <  )
)
109breq1d 4409 . . . 4  |-  ( T : X --> Y  -> 
( ( N `  T )  <_  A  <->  sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A ) )
1110adantr 465 . . 3  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A ) )
124, 6nmosetre 24315 . . . . . 6  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR )
132, 12mpan 670 . . . . 5  |-  ( T : X --> Y  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR )
14 ressxr 9537 . . . . 5  |-  RR  C_  RR*
1513, 14syl6ss 3475 . . . 4  |-  ( T : X --> Y  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR* )
16 supxrleub 11399 . . . 4  |-  ( ( { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR*  /\  A  e. 
RR* )  ->  ( sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A  <->  A. z  e.  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } z  <_  A )
)
1715, 16sylan 471 . . 3  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x )
) ) } ,  RR* ,  <  )  <_  A 
<-> 
A. z  e.  {
y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x )
) ) } z  <_  A ) )
1811, 17bitrd 253 . 2  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. z  e.  { y  |  E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  y  =  ( M `  ( T `
 x ) ) ) } z  <_  A ) )
19 eqeq1 2458 . . . . . 6  |-  ( y  =  z  ->  (
y  =  ( M `
 ( T `  x ) )  <->  z  =  ( M `  ( T `
 x ) ) ) )
2019anbi2d 703 . . . . 5  |-  ( y  =  z  ->  (
( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) )  <-> 
( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) ) ) )
2120rexbidv 2864 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) )  <->  E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) ) ) )
2221ralab 3225 . . 3  |-  ( A. z  e.  { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } z  <_  A  <->  A. z ( E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x )
) )  ->  z  <_  A ) )
23 ralcom4 3095 . . . 4  |-  ( A. x  e.  X  A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. z A. x  e.  X  ( ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A ) )
24 ancomst 452 . . . . . . . 8  |-  ( ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( ( z  =  ( M `  ( T `  x ) )  /\  ( L `
 x )  <_ 
1 )  ->  z  <_  A ) )
25 impexp 446 . . . . . . . 8  |-  ( ( ( z  =  ( M `  ( T `
 x ) )  /\  ( L `  x )  <_  1
)  ->  z  <_  A )  <->  ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) ) )
2624, 25bitri 249 . . . . . . 7  |-  ( ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) ) )
2726albii 1611 . . . . . 6  |-  ( A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. z
( z  =  ( M `  ( T `
 x ) )  ->  ( ( L `
 x )  <_ 
1  ->  z  <_  A ) ) )
28 fvex 5808 . . . . . . 7  |-  ( M `
 ( T `  x ) )  e. 
_V
29 breq1 4402 . . . . . . . 8  |-  ( z  =  ( M `  ( T `  x ) )  ->  ( z  <_  A  <->  ( M `  ( T `  x ) )  <_  A )
)
3029imbi2d 316 . . . . . . 7  |-  ( z  =  ( M `  ( T `  x ) )  ->  ( (
( L `  x
)  <_  1  ->  z  <_  A )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) ) )
3128, 30ceqsalv 3104 . . . . . 6  |-  ( A. z ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
3227, 31bitri 249 . . . . 5  |-  ( A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
3332ralbii 2838 . . . 4  |-  ( A. x  e.  X  A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. x  e.  X  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
34 r19.23v 2937 . . . . 5  |-  ( A. x  e.  X  (
( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x )
) )  ->  z  <_  A ) )
3534albii 1611 . . . 4  |-  ( A. z A. x  e.  X  ( ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A )  <->  A. z ( E. x  e.  X  ( ( L `  x
)  <_  1  /\  z  =  ( M `  ( T `  x
) ) )  -> 
z  <_  A )
)
3623, 33, 353bitr3i 275 . . 3  |-  ( A. x  e.  X  (
( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A )  <->  A. z
( E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A ) )
3722, 36bitr4i 252 . 2  |-  ( A. z  e.  { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } z  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) )
3818, 37syl6bb 261 1  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370    e. wcel 1758   {cab 2439   A.wral 2798   E.wrex 2799    C_ wss 3435   class class class wbr 4399   -->wf 5521   ` cfv 5525  (class class class)co 6199   supcsup 7800   RRcr 9391   1c1 9393   RR*cxr 9527    < clt 9528    <_ cle 9529   NrmCVeccnv 24113   BaseSetcba 24115   normCVcnmcv 24119   normOpOLDcnmoo 24292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-po 4748  df-so 4749  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-vc 24075  df-nv 24121  df-va 24124  df-ba 24125  df-sm 24126  df-0v 24127  df-nmcv 24129  df-nmoo 24296
This theorem is referenced by:  nmoub3i  24324  nmobndi  24326  ubthlem2  24423
  Copyright terms: Public domain W3C validator