MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Structured version   Unicode version

Theorem nmoubi 25360
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOpOLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmoubi  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) ) )
Distinct variable groups:    x, A    x, L    x, U    x, W    x, Y    x, M    x, T    x, X
Allowed substitution hint:    N( x)

Proof of Theorem nmoubi
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6  |-  U  e.  NrmCVec
2 nmoubi.w . . . . . 6  |-  W  e.  NrmCVec
3 nmoubi.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
4 nmoubi.y . . . . . . 7  |-  Y  =  ( BaseSet `  W )
5 nmoubi.l . . . . . . 7  |-  L  =  ( normCV `  U )
6 nmoubi.m . . . . . . 7  |-  M  =  ( normCV `  W )
7 nmoubi.3 . . . . . . 7  |-  N  =  ( U normOpOLD W
)
83, 4, 5, 6, 7nmooval 25351 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { y  |  E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  y  =  ( M `  ( T `
 x ) ) ) } ,  RR* ,  <  ) )
91, 2, 8mp3an12 1314 . . . . 5  |-  ( T : X --> Y  -> 
( N `  T
)  =  sup ( { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } ,  RR* ,  <  )
)
109breq1d 4457 . . . 4  |-  ( T : X --> Y  -> 
( ( N `  T )  <_  A  <->  sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A ) )
1110adantr 465 . . 3  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A ) )
124, 6nmosetre 25352 . . . . . 6  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR )
132, 12mpan 670 . . . . 5  |-  ( T : X --> Y  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR )
14 ressxr 9633 . . . . 5  |-  RR  C_  RR*
1513, 14syl6ss 3516 . . . 4  |-  ( T : X --> Y  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR* )
16 supxrleub 11514 . . . 4  |-  ( ( { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR*  /\  A  e. 
RR* )  ->  ( sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A  <->  A. z  e.  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } z  <_  A )
)
1715, 16sylan 471 . . 3  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x )
) ) } ,  RR* ,  <  )  <_  A 
<-> 
A. z  e.  {
y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x )
) ) } z  <_  A ) )
1811, 17bitrd 253 . 2  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. z  e.  { y  |  E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  y  =  ( M `  ( T `
 x ) ) ) } z  <_  A ) )
19 eqeq1 2471 . . . . . 6  |-  ( y  =  z  ->  (
y  =  ( M `
 ( T `  x ) )  <->  z  =  ( M `  ( T `
 x ) ) ) )
2019anbi2d 703 . . . . 5  |-  ( y  =  z  ->  (
( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) )  <-> 
( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) ) ) )
2120rexbidv 2973 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) )  <->  E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) ) ) )
2221ralab 3264 . . 3  |-  ( A. z  e.  { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } z  <_  A  <->  A. z ( E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x )
) )  ->  z  <_  A ) )
23 ralcom4 3132 . . . 4  |-  ( A. x  e.  X  A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. z A. x  e.  X  ( ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A ) )
24 ancomst 452 . . . . . . . 8  |-  ( ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( ( z  =  ( M `  ( T `  x ) )  /\  ( L `
 x )  <_ 
1 )  ->  z  <_  A ) )
25 impexp 446 . . . . . . . 8  |-  ( ( ( z  =  ( M `  ( T `
 x ) )  /\  ( L `  x )  <_  1
)  ->  z  <_  A )  <->  ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) ) )
2624, 25bitri 249 . . . . . . 7  |-  ( ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) ) )
2726albii 1620 . . . . . 6  |-  ( A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. z
( z  =  ( M `  ( T `
 x ) )  ->  ( ( L `
 x )  <_ 
1  ->  z  <_  A ) ) )
28 fvex 5874 . . . . . . 7  |-  ( M `
 ( T `  x ) )  e. 
_V
29 breq1 4450 . . . . . . . 8  |-  ( z  =  ( M `  ( T `  x ) )  ->  ( z  <_  A  <->  ( M `  ( T `  x ) )  <_  A )
)
3029imbi2d 316 . . . . . . 7  |-  ( z  =  ( M `  ( T `  x ) )  ->  ( (
( L `  x
)  <_  1  ->  z  <_  A )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) ) )
3128, 30ceqsalv 3141 . . . . . 6  |-  ( A. z ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
3227, 31bitri 249 . . . . 5  |-  ( A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
3332ralbii 2895 . . . 4  |-  ( A. x  e.  X  A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. x  e.  X  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
34 r19.23v 2943 . . . . 5  |-  ( A. x  e.  X  (
( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x )
) )  ->  z  <_  A ) )
3534albii 1620 . . . 4  |-  ( A. z A. x  e.  X  ( ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A )  <->  A. z ( E. x  e.  X  ( ( L `  x
)  <_  1  /\  z  =  ( M `  ( T `  x
) ) )  -> 
z  <_  A )
)
3623, 33, 353bitr3i 275 . . 3  |-  ( A. x  e.  X  (
( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A )  <->  A. z
( E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A ) )
3722, 36bitr4i 252 . 2  |-  ( A. z  e.  { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } z  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) )
3818, 37syl6bb 261 1  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447   -->wf 5582   ` cfv 5586  (class class class)co 6282   supcsup 7896   RRcr 9487   1c1 9489   RR*cxr 9623    < clt 9624    <_ cle 9625   NrmCVeccnv 25150   BaseSetcba 25152   normCVcnmcv 25156   normOpOLDcnmoo 25329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-vc 25112  df-nv 25158  df-va 25161  df-ba 25162  df-sm 25163  df-0v 25164  df-nmcv 25166  df-nmoo 25333
This theorem is referenced by:  nmoub3i  25361  nmobndi  25363  ubthlem2  25460
  Copyright terms: Public domain W3C validator