HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopun Structured version   Visualization version   Unicode version

Theorem nmopun 27748
Description: Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopun  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( normop `  T )  =  1 )

Proof of Theorem nmopun
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unoplin 27654 . . . . 5  |-  ( T  e.  UniOp  ->  T  e.  LinOp
)
2 lnopf 27593 . . . . 5  |-  ( T  e.  LinOp  ->  T : ~H
--> ~H )
31, 2syl 17 . . . 4  |-  ( T  e.  UniOp  ->  T : ~H
--> ~H )
4 nmopval 27590 . . . 4  |-  ( T : ~H --> ~H  ->  (
normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
53, 4syl 17 . . 3  |-  ( T  e.  UniOp  ->  ( normop `  T
)  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  ) )
65adantl 473 . 2  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( normop `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
7 nmopsetretHIL 27598 . . . . . . 7  |-  ( T : ~H --> ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) }  C_  RR )
8 ressxr 9702 . . . . . . 7  |-  RR  C_  RR*
97, 8syl6ss 3430 . . . . . 6  |-  ( T : ~H --> ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) }  C_  RR* )
103, 9syl 17 . . . . 5  |-  ( T  e.  UniOp  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } 
C_  RR* )
1110adantl 473 . . . 4  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) }  C_  RR* )
12 1re 9660 . . . . 5  |-  1  e.  RR
1312rexri 9711 . . . 4  |-  1  e.  RR*
1411, 13jctir 547 . . 3  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } 
C_  RR*  /\  1  e. 
RR* ) )
15 vex 3034 . . . . . . 7  |-  z  e. 
_V
16 eqeq1 2475 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  =  ( normh `  ( T `  y
) )  <->  z  =  ( normh `  ( T `  y ) ) ) )
1716anbi2d 718 . . . . . . . 8  |-  ( x  =  z  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  z  =  ( normh `  ( T `  y ) ) ) ) )
1817rexbidv 2892 . . . . . . 7  |-  ( x  =  z  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( normh `  ( T `  y ) ) ) ) )
1915, 18elab 3173 . . . . . 6  |-  ( z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) }  <->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  z  =  ( normh `  ( T `  y
) ) ) )
20 unopnorm 27651 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  ( normh `  ( T `  y ) )  =  ( normh `  y )
)
2120eqeq2d 2481 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
z  =  ( normh `  ( T `  y
) )  <->  z  =  ( normh `  y )
) )
2221anbi2d 718 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( ( normh `  y
)  <_  1  /\  z  =  ( normh `  ( T `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  z  =  ( normh `  y )
) ) )
23 breq1 4398 . . . . . . . . . 10  |-  ( z  =  ( normh `  y
)  ->  ( z  <_  1  <->  ( normh `  y
)  <_  1 ) )
2423biimparc 495 . . . . . . . . 9  |-  ( ( ( normh `  y )  <_  1  /\  z  =  ( normh `  y )
)  ->  z  <_  1 )
2522, 24syl6bi 236 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( ( normh `  y
)  <_  1  /\  z  =  ( normh `  ( T `  y
) ) )  -> 
z  <_  1 ) )
2625rexlimdva 2871 . . . . . . 7  |-  ( T  e.  UniOp  ->  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  z  =  ( normh `  ( T `  y ) ) )  ->  z  <_  1
) )
2726imp 436 . . . . . 6  |-  ( ( T  e.  UniOp  /\  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  z  =  ( normh `  ( T `  y ) ) ) )  ->  z  <_  1 )
2819, 27sylan2b 483 . . . . 5  |-  ( ( T  e.  UniOp  /\  z  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } )  ->  z  <_  1 )
2928ralrimiva 2809 . . . 4  |-  ( T  e.  UniOp  ->  A. z  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <_  1
)
3029adantl 473 . . 3  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  A. z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } z  <_  1 )
31 hne0 27281 . . . . . . . . . . 11  |-  ( ~H  =/=  0H  <->  E. y  e.  ~H  y  =/=  0h )
32 norm1hex 26985 . . . . . . . . . . 11  |-  ( E. y  e.  ~H  y  =/=  0h  <->  E. y  e.  ~H  ( normh `  y )  =  1 )
3331, 32sylbb 202 . . . . . . . . . 10  |-  ( ~H  =/=  0H  ->  E. y  e.  ~H  ( normh `  y
)  =  1 )
3433adantr 472 . . . . . . . . 9  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  E. y  e.  ~H  ( normh `  y )  =  1 )
35 1le1 10262 . . . . . . . . . . . . . 14  |-  1  <_  1
36 breq1 4398 . . . . . . . . . . . . . 14  |-  ( (
normh `  y )  =  1  ->  ( ( normh `  y )  <_ 
1  <->  1  <_  1
) )
3735, 36mpbiri 241 . . . . . . . . . . . . 13  |-  ( (
normh `  y )  =  1  ->  ( normh `  y )  <_  1
)
3837a1i 11 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( normh `  y )  =  1  ->  ( normh `  y )  <_ 
1 ) )
3920adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
( normh `  ( T `  y ) )  =  ( normh `  y )
)
40 eqeq2 2482 . . . . . . . . . . . . . . . 16  |-  ( (
normh `  y )  =  1  ->  ( ( normh `  ( T `  y ) )  =  ( normh `  y )  <->  (
normh `  ( T `  y ) )  =  1 ) )
4140adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
( ( normh `  ( T `  y )
)  =  ( normh `  y )  <->  ( normh `  ( T `  y
) )  =  1 ) )
4239, 41mpbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
( normh `  ( T `  y ) )  =  1 )
4342eqcomd 2477 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  ( normh `  y )  =  1 )  -> 
1  =  ( normh `  ( T `  y
) ) )
4443ex 441 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( normh `  y )  =  1  ->  1  =  ( normh `  ( T `  y )
) ) )
4538, 44jcad 542 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( normh `  y )  =  1  ->  (
( normh `  y )  <_  1  /\  1  =  ( normh `  ( T `  y ) ) ) ) )
4645adantll 728 . . . . . . . . . 10  |-  ( ( ( ~H  =/=  0H  /\  T  e.  UniOp )  /\  y  e.  ~H )  ->  ( ( normh `  y
)  =  1  -> 
( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) ) )
4746reximdva 2858 . . . . . . . . 9  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( E. y  e. 
~H  ( normh `  y
)  =  1  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) ) )
4834, 47mpd 15 . . . . . . . 8  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) )
49 1ex 9656 . . . . . . . . 9  |-  1  e.  _V
50 eqeq1 2475 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  =  ( normh `  ( T `  y
) )  <->  1  =  ( normh `  ( T `  y ) ) ) )
5150anbi2d 718 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  1  =  ( normh `  ( T `  y ) ) ) ) )
5251rexbidv 2892 . . . . . . . . 9  |-  ( x  =  1  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  1  =  ( normh `  ( T `  y ) ) ) ) )
5349, 52elab 3173 . . . . . . . 8  |-  ( 1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) }  <->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  1  =  ( normh `  ( T `  y
) ) ) )
5448, 53sylibr 217 . . . . . . 7  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } )
5554adantr 472 . . . . . 6  |-  ( ( ( ~H  =/=  0H  /\  T  e.  UniOp )  /\  z  e.  RR )  ->  1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } )
56 breq2 4399 . . . . . . 7  |-  ( w  =  1  ->  (
z  <  w  <->  z  <  1 ) )
5756rspcev 3136 . . . . . 6  |-  ( ( 1  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) }  /\  z  <  1
)  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
)
5855, 57sylan 479 . . . . 5  |-  ( ( ( ( ~H  =/=  0H 
/\  T  e.  UniOp )  /\  z  e.  RR )  /\  z  <  1
)  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
)
5958ex 441 . . . 4  |-  ( ( ( ~H  =/=  0H  /\  T  e.  UniOp )  /\  z  e.  RR )  ->  ( z  <  1  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
) )
6059ralrimiva 2809 . . 3  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  A. z  e.  RR  ( z  <  1  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } z  <  w
) )
61 supxr2 11624 . . 3  |-  ( ( ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } 
C_  RR*  /\  1  e. 
RR* )  /\  ( A. z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } z  <_  1  /\  A. z  e.  RR  (
z  <  1  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } z  <  w ) ) )  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( normh `  ( T `  y ) ) ) } ,  RR* ,  <  )  =  1 )
6214, 30, 60, 61syl12anc 1290 . 2  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  ->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( normh `  ( T `  y
) ) ) } ,  RR* ,  <  )  =  1 )
636, 62eqtrd 2505 1  |-  ( ( ~H  =/=  0H  /\  T  e.  UniOp )  -> 
( normop `  T )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   A.wral 2756   E.wrex 2757    C_ wss 3390   class class class wbr 4395   -->wf 5585   ` cfv 5589   supcsup 7972   RRcr 9556   1c1 9558   RR*cxr 9692    < clt 9693    <_ cle 9694   ~Hchil 26653   normhcno 26657   0hc0v 26658   0Hc0h 26669   normopcnop 26679   LinOpclo 26681   UniOpcuo 26683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-hilex 26733  ax-hfvadd 26734  ax-hvcom 26735  ax-hvass 26736  ax-hv0cl 26737  ax-hvaddid 26738  ax-hfvmul 26739  ax-hvmulid 26740  ax-hvmulass 26741  ax-hvdistr1 26742  ax-hvdistr2 26743  ax-hvmul0 26744  ax-hfi 26813  ax-his1 26816  ax-his2 26817  ax-his3 26818  ax-his4 26819
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-grpo 26000  df-gid 26001  df-ablo 26091  df-vc 26246  df-nv 26292  df-va 26295  df-ba 26296  df-sm 26297  df-0v 26298  df-nmcv 26300  df-hnorm 26702  df-hba 26703  df-hvsub 26705  df-hlim 26706  df-sh 26941  df-ch 26955  df-ch0 26987  df-nmop 27573  df-lnop 27575  df-unop 27577
This theorem is referenced by:  unopbd  27749  unierri  27838
  Copyright terms: Public domain W3C validator