HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoi Structured version   Visualization version   Unicode version

Theorem nmopcoi 27760
Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1  |-  S  e.  BndLinOp
nmoptri.2  |-  T  e.  BndLinOp
Assertion
Ref Expression
nmopcoi  |-  ( normop `  ( S  o.  T
) )  <_  (
( normop `  S )  x.  ( normop `  T )
)

Proof of Theorem nmopcoi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . . 6  |-  S  e.  BndLinOp
2 bdopln 27526 . . . . . 6  |-  ( S  e.  BndLinOp  ->  S  e.  LinOp )
31, 2ax-mp 5 . . . . 5  |-  S  e. 
LinOp
4 nmoptri.2 . . . . . 6  |-  T  e.  BndLinOp
5 bdopln 27526 . . . . . 6  |-  ( T  e.  BndLinOp  ->  T  e.  LinOp )
64, 5ax-mp 5 . . . . 5  |-  T  e. 
LinOp
73, 6lnopcoi 27668 . . . 4  |-  ( S  o.  T )  e. 
LinOp
87lnopfi 27634 . . 3  |-  ( S  o.  T ) : ~H --> ~H
9 nmopre 27535 . . . . . 6  |-  ( S  e.  BndLinOp  ->  ( normop `  S
)  e.  RR )
101, 9ax-mp 5 . . . . 5  |-  ( normop `  S )  e.  RR
11 nmopre 27535 . . . . . 6  |-  ( T  e.  BndLinOp  ->  ( normop `  T
)  e.  RR )
124, 11ax-mp 5 . . . . 5  |-  ( normop `  T )  e.  RR
1310, 12remulcli 9662 . . . 4  |-  ( (
normop `  S )  x.  ( normop `  T )
)  e.  RR
1413rexri 9698 . . 3  |-  ( (
normop `  S )  x.  ( normop `  T )
)  e.  RR*
15 nmopub 27573 . . 3  |-  ( ( ( S  o.  T
) : ~H --> ~H  /\  ( ( normop `  S
)  x.  ( normop `  T ) )  e. 
RR* )  ->  (
( normop `  ( S  o.  T ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) ) )
168, 14, 15mp2an 679 . 2  |-  ( (
normop `  ( S  o.  T ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
17 0le0 10706 . . . . . . 7  |-  0  <_  0
1817a1i 11 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  0  <_  0 )
193, 6lnopco0i 27669 . . . . . . . 8  |-  ( (
normop `  T )  =  0  ->  ( normop `  ( S  o.  T )
)  =  0 )
207nmlnop0iHIL 27661 . . . . . . . 8  |-  ( (
normop `  ( S  o.  T ) )  =  0  <->  ( S  o.  T )  =  0hop )
2119, 20sylib 200 . . . . . . 7  |-  ( (
normop `  T )  =  0  ->  ( S  o.  T )  =  0hop )
22 fveq1 5869 . . . . . . . . 9  |-  ( ( S  o.  T )  =  0hop  ->  ( ( S  o.  T ) `
 x )  =  ( 0hop `  x
) )
2322fveq2d 5874 . . . . . . . 8  |-  ( ( S  o.  T )  =  0hop  ->  ( normh `  ( ( S  o.  T ) `  x
) )  =  (
normh `  ( 0hop `  x
) ) )
24 ho0val 27415 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( 0hop `  x )  =  0h )
2524fveq2d 5874 . . . . . . . . 9  |-  ( x  e.  ~H  ->  ( normh `  ( 0hop `  x
) )  =  (
normh `  0h ) )
26 norm0 26793 . . . . . . . . 9  |-  ( normh `  0h )  =  0
2725, 26syl6eq 2503 . . . . . . . 8  |-  ( x  e.  ~H  ->  ( normh `  ( 0hop `  x
) )  =  0 )
2823, 27sylan9eq 2507 . . . . . . 7  |-  ( ( ( S  o.  T
)  =  0hop  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  =  0 )
2921, 28sylan 474 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  =  0 )
30 oveq2 6303 . . . . . . . 8  |-  ( (
normop `  T )  =  0  ->  ( ( normop `  S )  x.  ( normop `  T ) )  =  ( ( normop `  S
)  x.  0 ) )
3110recni 9660 . . . . . . . . 9  |-  ( normop `  S )  e.  CC
3231mul01i 9828 . . . . . . . 8  |-  ( (
normop `  S )  x.  0 )  =  0
3330, 32syl6eq 2503 . . . . . . 7  |-  ( (
normop `  T )  =  0  ->  ( ( normop `  S )  x.  ( normop `  T ) )  =  0 )
3433adantr 467 . . . . . 6  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  (
( normop `  S )  x.  ( normop `  T )
)  =  0 )
3518, 29, 343brtr4d 4436 . . . . 5  |-  ( ( ( normop `  T )  =  0  /\  x  e.  ~H )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
3635adantrr 724 . . . 4  |-  ( ( ( normop `  T )  =  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
37 df-ne 2626 . . . . 5  |-  ( (
normop `  T )  =/=  0  <->  -.  ( normop `  T
)  =  0 )
388ffvelrni 6026 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  (
( S  o.  T
) `  x )  e.  ~H )
39 normcl 26790 . . . . . . . . . . . . . . 15  |-  ( ( ( S  o.  T
) `  x )  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x
) )  e.  RR )
4038, 39syl 17 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x ) )  e.  RR )
4140recnd 9674 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC )
4212recni 9660 . . . . . . . . . . . . . 14  |-  ( normop `  T )  e.  CC
43 divrec2 10294 . . . . . . . . . . . . . 14  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC  /\  ( normop `  T )  e.  CC  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4442, 43mp3an2 1354 . . . . . . . . . . . . 13  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  CC  /\  ( normop `  T )  =/=  0
)  ->  ( ( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4541, 44sylan 474 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4645ancoms 455 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
4712rerecclzi 10378 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  RR )
48 bdopf 27527 . . . . . . . . . . . . . . . . . 18  |-  ( T  e.  BndLinOp  ->  T : ~H --> ~H )
494, 48ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  T : ~H
--> ~H
50 nmopgt0 27577 . . . . . . . . . . . . . . . . 17  |-  ( T : ~H --> ~H  ->  ( ( normop `  T )  =/=  0  <->  0  <  ( normop `  T ) ) )
5149, 50ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( (
normop `  T )  =/=  0  <->  0  <  ( normop `  T ) )
5212recgt0i 10518 . . . . . . . . . . . . . . . 16  |-  ( 0  <  ( normop `  T
)  ->  0  <  ( 1  /  ( normop `  T ) ) )
5351, 52sylbi 199 . . . . . . . . . . . . . . 15  |-  ( (
normop `  T )  =/=  0  ->  0  <  ( 1  /  ( normop `  T ) ) )
54 0re 9648 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
55 ltle 9727 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normop `  T ) )  e.  RR )  ->  (
0  <  ( 1  /  ( normop `  T
) )  ->  0  <_  ( 1  /  ( normop `  T ) ) ) )
5654, 55mpan 677 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  ( normop `  T ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normop `  T )
)  ->  0  <_  ( 1  /  ( normop `  T ) ) ) )
5747, 53, 56sylc 62 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  0  <_  ( 1  /  ( normop `  T ) ) )
5847, 57absidd 13496 . . . . . . . . . . . . 13  |-  ( (
normop `  T )  =/=  0  ->  ( abs `  ( 1  /  ( normop `  T ) ) )  =  ( 1  / 
( normop `  T )
) )
5958adantr 467 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( abs `  ( 1  / 
( normop `  T )
) )  =  ( 1  /  ( normop `  T ) ) )
6059oveq1d 6310 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) )  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
6146, 60eqtr4d 2490 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( ( abs `  ( 1  /  ( normop `  T
) ) )  x.  ( normh `  ( ( S  o.  T ) `  x ) ) ) )
6242recclzi 10339 . . . . . . . . . . 11  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  CC )
63 norm-iii 26805 . . . . . . . . . . 11  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( ( S  o.  T ) `
 x )  e. 
~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) ) )
6462, 38, 63syl2an 480 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  (
( S  o.  T
) `  x )
) ) )
6561, 64eqtr4d 2490 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( normh `  ( ( 1  / 
( normop `  T )
)  .h  ( ( S  o.  T ) `
 x ) ) ) )
6649ffvelrni 6026 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
673lnopmuli 27637 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( S `
 ( T `  x ) ) ) )
6862, 66, 67syl2an 480 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( S `
 ( T `  x ) ) ) )
69 bdopf 27527 . . . . . . . . . . . . . . 15  |-  ( S  e.  BndLinOp  ->  S : ~H --> ~H )
701, 69ax-mp 5 . . . . . . . . . . . . . 14  |-  S : ~H
--> ~H
7170, 49hocoi 27429 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( S  o.  T
) `  x )  =  ( S `  ( T `  x ) ) )
7271oveq2d 6311 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( 1  /  ( normop `  T ) )  .h  ( ( S  o.  T ) `  x
) )  =  ( ( 1  /  ( normop `  T ) )  .h  ( S `  ( T `  x )
) ) )
7372adantl 468 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( ( S  o.  T ) `  x
) )  =  ( ( 1  /  ( normop `  T ) )  .h  ( S `  ( T `  x )
) ) )
7468, 73eqtr4d 2490 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( S `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( 1  / 
( normop `  T )
)  .h  ( ( S  o.  T ) `
 x ) ) )
7574fveq2d 5874 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) )  =  (
normh `  ( ( 1  /  ( normop `  T
) )  .h  (
( S  o.  T
) `  x )
) ) )
7665, 75eqtr4d 2490 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( ( S  o.  T ) `  x ) )  / 
( normop `  T )
)  =  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) ) )
7776adantrr 724 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  (
( S  o.  T
) `  x )
)  /  ( normop `  T ) )  =  ( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) ) )
78 hvmulcl 26678 . . . . . . . . . 10  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) )  e.  ~H )
7962, 66, 78syl2an 480 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) )  e.  ~H )
8079adantrr 724 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H )
81 norm-iii 26805 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normop `  T ) )  e.  CC  /\  ( T `
 x )  e. 
~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) ) )
8262, 66, 81syl2an 480 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) ) )
83 normcl 26790 . . . . . . . . . . . . . . . 16  |-  ( ( T `  x )  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
8466, 83syl 17 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
8584recnd 9674 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  CC )
86 divrec2 10294 . . . . . . . . . . . . . . 15  |-  ( ( ( normh `  ( T `  x ) )  e.  CC  /\  ( normop `  T )  e.  CC  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8742, 86mp3an2 1354 . . . . . . . . . . . . . 14  |-  ( ( ( normh `  ( T `  x ) )  e.  CC  /\  ( normop `  T )  =/=  0
)  ->  ( ( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8885, 87sylan 474 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
8988ancoms 455 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
9059oveq1d 6310 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( abs `  (
1  /  ( normop `  T ) ) )  x.  ( normh `  ( T `  x )
) )  =  ( ( 1  /  ( normop `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
9189, 90eqtr4d 2490 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( normh `  ( T `  x ) )  / 
( normop `  T )
)  =  ( ( abs `  ( 1  /  ( normop `  T
) ) )  x.  ( normh `  ( T `  x ) ) ) )
9282, 91eqtr4d 2490 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  =  ( ( normh `  ( T `  x ) )  / 
( normop `  T )
) )
9392adantrr 724 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  =  ( ( normh `  ( T `  x )
)  /  ( normop `  T ) ) )
94 nmoplb 27572 . . . . . . . . . . . . 13  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H  /\  ( normh `  x )  <_ 
1 )  ->  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)
9549, 94mp3an1 1353 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)
9642mulid2i 9651 . . . . . . . . . . . 12  |-  ( 1  x.  ( normop `  T
) )  =  (
normop `  T )
9795, 96syl6breqr 4446 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( 1  x.  ( normop `  T ) ) )
9897adantl 468 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( T `  x ) )  <_ 
( 1  x.  ( normop `  T ) ) )
9984adantr 467 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  ( normh `  ( T `  x ) )  e.  RR )
100 1red 9663 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  1  e.  RR )
10112a1i 11 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  ( normop `  T )  e.  RR )
10251biimpi 198 . . . . . . . . . . . . . 14  |-  ( (
normop `  T )  =/=  0  ->  0  <  (
normop `  T ) )
103102adantl 468 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  0  <  ( normop `  T )
)
104 ledivmul2 10491 . . . . . . . . . . . . 13  |-  ( ( ( normh `  ( T `  x ) )  e.  RR  /\  1  e.  RR  /\  ( (
normop `  T )  e.  RR  /\  0  < 
( normop `  T )
) )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
10599, 100, 101, 103, 104syl112anc 1273 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normop `  T )  =/=  0 )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
106105ancoms 455 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  =/=  0  /\  x  e.  ~H )  ->  (
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
107106adantrr 724 . . . . . . . . . 10  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( normh `  ( T `  x
) )  /  ( normop `  T ) )  <_ 
1  <->  ( normh `  ( T `  x )
)  <_  ( 1  x.  ( normop `  T
) ) ) )
10898, 107mpbird 236 . . . . . . . . 9  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  ( T `  x )
)  /  ( normop `  T ) )  <_ 
1 )
10993, 108eqbrtrd 4426 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
1  /  ( normop `  T ) )  .h  ( T `  x
) ) )  <_ 
1 )
110 nmoplb 27572 . . . . . . . . 9  |-  ( ( S : ~H --> ~H  /\  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  <_  1
)  ->  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) )  <_  ( normop `  S
) )
11170, 110mp3an1 1353 . . . . . . . 8  |-  ( ( ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normop `  T
) )  .h  ( T `  x )
) )  <_  1
)  ->  ( normh `  ( S `  (
( 1  /  ( normop `  T ) )  .h  ( T `  x
) ) ) )  <_  ( normop `  S
) )
11280, 109, 111syl2anc 667 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( S `  ( ( 1  / 
( normop `  T )
)  .h  ( T `
 x ) ) ) )  <_  ( normop `  S ) )
11377, 112eqbrtrd 4426 . . . . . 6  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  (
( S  o.  T
) `  x )
)  /  ( normop `  T ) )  <_ 
( normop `  S )
)
11440ad2antrl 735 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  e.  RR )
11510a1i 11 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normop `  S )  e.  RR )
116102adantr 467 . . . . . . . 8  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
0  <  ( normop `  T
) )
117116, 12jctil 540 . . . . . . 7  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normop `  T
)  e.  RR  /\  0  <  ( normop `  T
) ) )
118 ledivmul2 10491 . . . . . . 7  |-  ( ( ( normh `  ( ( S  o.  T ) `  x ) )  e.  RR  /\  ( normop `  S )  e.  RR  /\  ( ( normop `  T
)  e.  RR  /\  0  <  ( normop `  T
) ) )  -> 
( ( ( normh `  ( ( S  o.  T ) `  x
) )  /  ( normop `  T ) )  <_ 
( normop `  S )  <->  (
normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
119114, 115, 117, 118syl3anc 1269 . . . . . 6  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( normh `  ( ( S  o.  T ) `  x
) )  /  ( normop `  T ) )  <_ 
( normop `  S )  <->  (
normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) ) )
120113, 119mpbid 214 . . . . 5  |-  ( ( ( normop `  T )  =/=  0  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
12137, 120sylanbr 476 . . . 4  |-  ( ( -.  ( normop `  T
)  =  0  /\  ( x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
12236, 121pm2.61ian 800 . . 3  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( S  o.  T ) `  x ) )  <_ 
( ( normop `  S
)  x.  ( normop `  T ) ) )
123122ex 436 . 2  |-  ( x  e.  ~H  ->  (
( normh `  x )  <_  1  ->  ( normh `  ( ( S  o.  T ) `  x
) )  <_  (
( normop `  S )  x.  ( normop `  T )
) ) )
12416, 123mprgbir 2754 1  |-  ( normop `  ( S  o.  T
) )  <_  (
( normop `  S )  x.  ( normop `  T )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889    =/= wne 2624   A.wral 2739   class class class wbr 4405    o. ccom 4841   -->wf 5581   ` cfv 5585  (class class class)co 6295   CCcc 9542   RRcr 9543   0cc0 9544   1c1 9545    x. cmul 9549   RR*cxr 9679    < clt 9680    <_ cle 9681    / cdiv 10276   abscabs 13309   ~Hchil 26584    .h csm 26586   normhcno 26588   0hc0v 26589   0hopch0o 26608   normopcnop 26610   LinOpclo 26612   BndLinOpcbo 26613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cc 8870  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622  ax-addf 9623  ax-mulf 9624  ax-hilex 26664  ax-hfvadd 26665  ax-hvcom 26666  ax-hvass 26667  ax-hv0cl 26668  ax-hvaddid 26669  ax-hfvmul 26670  ax-hvmulid 26671  ax-hvmulass 26672  ax-hvdistr1 26673  ax-hvdistr2 26674  ax-hvmul0 26675  ax-hfi 26744  ax-his1 26747  ax-his2 26748  ax-his3 26749  ax-his4 26750  ax-hcompl 26867
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-iin 4284  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6920  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-omul 7192  df-er 7368  df-map 7479  df-pm 7480  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7889  df-fi 7930  df-sup 7961  df-inf 7962  df-oi 8030  df-card 8378  df-acn 8381  df-cda 8603  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12035  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-clim 13564  df-rlim 13565  df-sum 13765  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-sets 15139  df-ress 15140  df-plusg 15215  df-mulr 15216  df-starv 15217  df-sca 15218  df-vsca 15219  df-ip 15220  df-tset 15221  df-ple 15222  df-ds 15224  df-unif 15225  df-hom 15226  df-cco 15227  df-rest 15333  df-topn 15334  df-0g 15352  df-gsum 15353  df-topgen 15354  df-pt 15355  df-prds 15358  df-xrs 15412  df-qtop 15418  df-imas 15419  df-xps 15422  df-mre 15504  df-mrc 15505  df-acs 15507  df-mgm 16500  df-sgrp 16539  df-mnd 16549  df-submnd 16595  df-mulg 16688  df-cntz 16983  df-cmn 17444  df-psmet 18974  df-xmet 18975  df-met 18976  df-bl 18977  df-mopn 18978  df-fbas 18979  df-fg 18980  df-cnfld 18983  df-top 19933  df-bases 19934  df-topon 19935  df-topsp 19936  df-cld 20046  df-ntr 20047  df-cls 20048  df-nei 20126  df-cn 20255  df-cnp 20256  df-lm 20257  df-haus 20343  df-tx 20589  df-hmeo 20782  df-fil 20873  df-fm 20965  df-flim 20966  df-flf 20967  df-xms 21347  df-ms 21348  df-tms 21349  df-cfil 22237  df-cau 22238  df-cmet 22239  df-grpo 25931  df-gid 25932  df-ginv 25933  df-gdiv 25934  df-ablo 26022  df-subgo 26042  df-vc 26177  df-nv 26223  df-va 26226  df-ba 26227  df-sm 26228  df-0v 26229  df-vs 26230  df-nmcv 26231  df-ims 26232  df-dip 26349  df-ssp 26373  df-lno 26397  df-nmoo 26398  df-0o 26400  df-ph 26466  df-cbn 26517  df-hnorm 26633  df-hba 26634  df-hvsub 26636  df-hlim 26637  df-hcau 26638  df-sh 26872  df-ch 26886  df-oc 26917  df-ch0 26918  df-shs 26973  df-pjh 27060  df-h0op 27413  df-nmop 27504  df-lnop 27506  df-bdop 27507  df-hmop 27509
This theorem is referenced by:  bdopcoi  27763  unierri  27769
  Copyright terms: Public domain W3C validator