HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadji Structured version   Unicode version

Theorem nmopcoadji 26724
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1  |-  T  e.  BndLinOp
Assertion
Ref Expression
nmopcoadji  |-  ( normop `  ( ( adjh `  T
)  o.  T ) )  =  ( (
normop `  T ) ^
2 )

Proof of Theorem nmopcoadji
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nmopcoadj.1 . . . . . . 7  |-  T  e.  BndLinOp
2 adjbdlnb 26707 . . . . . . 7  |-  ( T  e.  BndLinOp 
<->  ( adjh `  T
)  e.  BndLinOp )
31, 2mpbi 208 . . . . . 6  |-  ( adjh `  T )  e.  BndLinOp
4 bdopf 26485 . . . . . 6  |-  ( (
adjh `  T )  e. 
BndLinOp  ->  ( adjh `  T
) : ~H --> ~H )
53, 4ax-mp 5 . . . . 5  |-  ( adjh `  T ) : ~H --> ~H
6 bdopf 26485 . . . . . 6  |-  ( T  e.  BndLinOp  ->  T : ~H --> ~H )
71, 6ax-mp 5 . . . . 5  |-  T : ~H
--> ~H
85, 7hocofi 26389 . . . 4  |-  ( (
adjh `  T )  o.  T ) : ~H --> ~H
9 nmopre 26493 . . . . . . 7  |-  ( T  e.  BndLinOp  ->  ( normop `  T
)  e.  RR )
101, 9ax-mp 5 . . . . . 6  |-  ( normop `  T )  e.  RR
1110resqcli 12221 . . . . 5  |-  ( (
normop `  T ) ^
2 )  e.  RR
12 rexr 9639 . . . . 5  |-  ( ( ( normop `  T ) ^ 2 )  e.  RR  ->  ( ( normop `  T ) ^ 2 )  e.  RR* )
1311, 12ax-mp 5 . . . 4  |-  ( (
normop `  T ) ^
2 )  e.  RR*
14 nmopub 26531 . . . 4  |-  ( ( ( ( adjh `  T
)  o.  T ) : ~H --> ~H  /\  ( ( normop `  T
) ^ 2 )  e.  RR* )  ->  (
( normop `  ( ( adjh `  T )  o.  T ) )  <_ 
( ( normop `  T
) ^ 2 )  <->  A. x  e.  ~H  ( ( normh `  x
)  <_  1  ->  (
normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  <_  (
( normop `  T ) ^ 2 ) ) ) )
158, 13, 14mp2an 672 . . 3  |-  ( (
normop `  ( ( adjh `  T )  o.  T
) )  <_  (
( normop `  T ) ^ 2 )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( (
( adjh `  T )  o.  T ) `  x
) )  <_  (
( normop `  T ) ^ 2 ) ) )
165, 7hocoi 26387 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( ( adjh `  T
)  o.  T ) `
 x )  =  ( ( adjh `  T
) `  ( T `  x ) ) )
1716fveq2d 5870 . . . . . . 7  |-  ( x  e.  ~H  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  =  (
normh `  ( ( adjh `  T ) `  ( T `  x )
) ) )
1817adantr 465 . . . . . 6  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  =  (
normh `  ( ( adjh `  T ) `  ( T `  x )
) ) )
197ffvelrni 6020 . . . . . . . . 9  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
205ffvelrni 6020 . . . . . . . . 9  |-  ( ( T `  x )  e.  ~H  ->  (
( adjh `  T ) `  ( T `  x
) )  e.  ~H )
21 normcl 25746 . . . . . . . . 9  |-  ( ( ( adjh `  T
) `  ( T `  x ) )  e. 
~H  ->  ( normh `  (
( adjh `  T ) `  ( T `  x
) ) )  e.  RR )
2219, 20, 213syl 20 . . . . . . . 8  |-  ( x  e.  ~H  ->  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  e.  RR )
2322adantr 465 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  e.  RR )
24 nmopre 26493 . . . . . . . . . 10  |-  ( (
adjh `  T )  e. 
BndLinOp  ->  ( normop `  ( adjh `  T ) )  e.  RR )
253, 24ax-mp 5 . . . . . . . . 9  |-  ( normop `  ( adjh `  T
) )  e.  RR
26 normcl 25746 . . . . . . . . . 10  |-  ( ( T `  x )  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
2719, 26syl 16 . . . . . . . . 9  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  e.  RR )
28 remulcl 9577 . . . . . . . . 9  |-  ( ( ( normop `  ( adjh `  T ) )  e.  RR  /\  ( normh `  ( T `  x
) )  e.  RR )  ->  ( ( normop `  ( adjh `  T
) )  x.  ( normh `  ( T `  x ) ) )  e.  RR )
2925, 27, 28sylancr 663 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( normop `  ( adjh `  T ) )  x.  ( normh `  ( T `  x ) ) )  e.  RR )
3029adantr 465 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  ( adjh `  T ) )  x.  ( normh `  ( T `  x ) ) )  e.  RR )
3125, 10remulcli 9610 . . . . . . . 8  |-  ( (
normop `  ( adjh `  T
) )  x.  ( normop `  T ) )  e.  RR
3231a1i 11 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  ( adjh `  T ) )  x.  ( normop `  T )
)  e.  RR )
333nmbdoplbi 26647 . . . . . . . . 9  |-  ( ( T `  x )  e.  ~H  ->  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  <_  (
( normop `  ( adjh `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
3419, 33syl 16 . . . . . . . 8  |-  ( x  e.  ~H  ->  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  <_  (
( normop `  ( adjh `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
3534adantr 465 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  <_  (
( normop `  ( adjh `  T ) )  x.  ( normh `  ( T `  x ) ) ) )
3627adantr 465 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  e.  RR )
3710a1i 11 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normop `  T )  e.  RR )
38 normcl 25746 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
39 remulcl 9577 . . . . . . . . . . 11  |-  ( ( ( normop `  T )  e.  RR  /\  ( normh `  x )  e.  RR )  ->  ( ( normop `  T )  x.  ( normh `  x ) )  e.  RR )
4010, 38, 39sylancr 663 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( normop `  T )  x.  ( normh `  x )
)  e.  RR )
4140adantr 465 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  T )  x.  ( normh `  x )
)  e.  RR )
421nmbdoplbi 26647 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( normh `  ( T `  x ) )  <_ 
( ( normop `  T
)  x.  ( normh `  x ) ) )
4342adantr 465 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( ( normop `  T
)  x.  ( normh `  x ) ) )
44 1re 9595 . . . . . . . . . . . 12  |-  1  e.  RR
45 nmopge0 26534 . . . . . . . . . . . . . . 15  |-  ( T : ~H --> ~H  ->  0  <_  ( normop `  T
) )
461, 6, 45mp2b 10 . . . . . . . . . . . . . 14  |-  0  <_  ( normop `  T )
4710, 46pm3.2i 455 . . . . . . . . . . . . 13  |-  ( (
normop `  T )  e.  RR  /\  0  <_ 
( normop `  T )
)
48 lemul2a 10397 . . . . . . . . . . . . 13  |-  ( ( ( ( normh `  x
)  e.  RR  /\  1  e.  RR  /\  (
( normop `  T )  e.  RR  /\  0  <_ 
( normop `  T )
) )  /\  ( normh `  x )  <_ 
1 )  ->  (
( normop `  T )  x.  ( normh `  x )
)  <_  ( ( normop `  T )  x.  1 ) )
4947, 48mp3anl3 1320 . . . . . . . . . . . 12  |-  ( ( ( ( normh `  x
)  e.  RR  /\  1  e.  RR )  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  T )  x.  ( normh `  x )
)  <_  ( ( normop `  T )  x.  1 ) )
5044, 49mpanl2 681 . . . . . . . . . . 11  |-  ( ( ( normh `  x )  e.  RR  /\  ( normh `  x )  <_  1
)  ->  ( ( normop `  T )  x.  ( normh `  x ) )  <_  ( ( normop `  T )  x.  1 ) )
5138, 50sylan 471 . . . . . . . . . 10  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  T )  x.  ( normh `  x )
)  <_  ( ( normop `  T )  x.  1 ) )
5210recni 9608 . . . . . . . . . . 11  |-  ( normop `  T )  e.  CC
5352mulid1i 9598 . . . . . . . . . 10  |-  ( (
normop `  T )  x.  1 )  =  (
normop `  T )
5451, 53syl6breq 4486 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  T )  x.  ( normh `  x )
)  <_  ( normop `  T
) )
5536, 41, 37, 43, 54letrd 9738 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)
56 nmopge0 26534 . . . . . . . . . . 11  |-  ( (
adjh `  T ) : ~H --> ~H  ->  0  <_ 
( normop `  ( adjh `  T ) ) )
573, 4, 56mp2b 10 . . . . . . . . . 10  |-  0  <_  ( normop `  ( adjh `  T ) )
5825, 57pm3.2i 455 . . . . . . . . 9  |-  ( (
normop `  ( adjh `  T
) )  e.  RR  /\  0  <_  ( normop `  ( adjh `  T ) ) )
59 lemul2a 10397 . . . . . . . . 9  |-  ( ( ( ( normh `  ( T `  x )
)  e.  RR  /\  ( normop `  T )  e.  RR  /\  ( (
normop `  ( adjh `  T
) )  e.  RR  /\  0  <_  ( normop `  ( adjh `  T ) ) ) )  /\  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)  ->  ( ( normop `  ( adjh `  T
) )  x.  ( normh `  ( T `  x ) ) )  <_  ( ( normop `  ( adjh `  T
) )  x.  ( normop `  T ) ) )
6058, 59mp3anl3 1320 . . . . . . . 8  |-  ( ( ( ( normh `  ( T `  x )
)  e.  RR  /\  ( normop `  T )  e.  RR )  /\  ( normh `  ( T `  x ) )  <_ 
( normop `  T )
)  ->  ( ( normop `  ( adjh `  T
) )  x.  ( normh `  ( T `  x ) ) )  <_  ( ( normop `  ( adjh `  T
) )  x.  ( normop `  T ) ) )
6136, 37, 55, 60syl21anc 1227 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  ( adjh `  T ) )  x.  ( normh `  ( T `  x ) ) )  <_  ( ( normop `  ( adjh `  T
) )  x.  ( normop `  T ) ) )
6223, 30, 32, 35, 61letrd 9738 . . . . . 6  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  <_  (
( normop `  ( adjh `  T ) )  x.  ( normop `  T )
) )
6318, 62eqbrtrd 4467 . . . . 5  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  <_  (
( normop `  ( adjh `  T ) )  x.  ( normop `  T )
) )
641nmopadji 26713 . . . . . . 7  |-  ( normop `  ( adjh `  T
) )  =  (
normop `  T )
6564oveq1i 6294 . . . . . 6  |-  ( (
normop `  ( adjh `  T
) )  x.  ( normop `  T ) )  =  ( ( normop `  T
)  x.  ( normop `  T ) )
6652sqvali 12215 . . . . . 6  |-  ( (
normop `  T ) ^
2 )  =  ( ( normop `  T )  x.  ( normop `  T )
)
6765, 66eqtr4i 2499 . . . . 5  |-  ( (
normop `  ( adjh `  T
) )  x.  ( normop `  T ) )  =  ( ( normop `  T
) ^ 2 )
6863, 67syl6breq 4486 . . . 4  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  <_  (
( normop `  T ) ^ 2 ) )
6968ex 434 . . 3  |-  ( x  e.  ~H  ->  (
( normh `  x )  <_  1  ->  ( normh `  ( ( ( adjh `  T )  o.  T
) `  x )
)  <_  ( ( normop `  T ) ^ 2 ) ) )
7015, 69mprgbir 2828 . 2  |-  ( normop `  ( ( adjh `  T
)  o.  T ) )  <_  ( ( normop `  T ) ^ 2 )
71 nmopge0 26534 . . . . . . . 8  |-  ( ( ( adjh `  T
)  o.  T ) : ~H --> ~H  ->  0  <_  ( normop `  (
( adjh `  T )  o.  T ) ) )
728, 71ax-mp 5 . . . . . . 7  |-  0  <_  ( normop `  ( ( adjh `  T )  o.  T ) )
733, 1bdopcoi 26721 . . . . . . . . 9  |-  ( (
adjh `  T )  o.  T )  e.  BndLinOp
74 nmopre 26493 . . . . . . . . 9  |-  ( ( ( adjh `  T
)  o.  T )  e.  BndLinOp  ->  ( normop `  (
( adjh `  T )  o.  T ) )  e.  RR )
7573, 74ax-mp 5 . . . . . . . 8  |-  ( normop `  ( ( adjh `  T
)  o.  T ) )  e.  RR
7675sqrtcli 13167 . . . . . . 7  |-  ( 0  <_  ( normop `  (
( adjh `  T )  o.  T ) )  -> 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  e.  RR )
77 rexr 9639 . . . . . . 7  |-  ( ( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  e.  RR  ->  ( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  e.  RR* )
7872, 76, 77mp2b 10 . . . . . 6  |-  ( sqr `  ( normop `  ( ( adjh `  T )  o.  T ) ) )  e.  RR*
79 nmopub 26531 . . . . . 6  |-  ( ( T : ~H --> ~H  /\  ( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  e.  RR* )  ->  ( ( normop `  T )  <_  ( sqr `  ( normop `  (
( adjh `  T )  o.  T ) ) )  <->  A. x  e.  ~H  ( ( normh `  x
)  <_  1  ->  (
normh `  ( T `  x ) )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ) ) )
807, 78, 79mp2an 672 . . . . 5  |-  ( (
normop `  T )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  <->  A. x  e.  ~H  ( ( normh `  x )  <_  1  ->  ( normh `  ( T `  x ) )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ) )
8119, 20syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( adjh `  T ) `  ( T `  x
) )  e.  ~H )
82 hicl 25701 . . . . . . . . . . . 12  |-  ( ( ( ( adjh `  T
) `  ( T `  x ) )  e. 
~H  /\  x  e.  ~H )  ->  ( ( ( adjh `  T
) `  ( T `  x ) )  .ih  x )  e.  CC )
8381, 82mpancom 669 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( ( adjh `  T
) `  ( T `  x ) )  .ih  x )  e.  CC )
8483abscld 13230 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( abs `  ( ( (
adjh `  T ) `  ( T `  x
) )  .ih  x
) )  e.  RR )
8584adantr 465 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( abs `  ( ( (
adjh `  T ) `  ( T `  x
) )  .ih  x
) )  e.  RR )
8622, 38remulcld 9624 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) )  e.  RR )
8786adantr 465 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) )  e.  RR )
8875a1i 11 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normop `  ( ( adjh `  T
)  o.  T ) )  e.  RR )
89 bcs 25802 . . . . . . . . . . 11  |-  ( ( ( ( adjh `  T
) `  ( T `  x ) )  e. 
~H  /\  x  e.  ~H )  ->  ( abs `  ( ( ( adjh `  T ) `  ( T `  x )
)  .ih  x )
)  <_  ( ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  x.  ( normh `  x ) ) )
9081, 89mpancom 669 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( abs `  ( ( (
adjh `  T ) `  ( T `  x
) )  .ih  x
) )  <_  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) ) )
9190adantr 465 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( abs `  ( ( (
adjh `  T ) `  ( T `  x
) )  .ih  x
) )  <_  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) ) )
925, 7hococli 26388 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( ( adjh `  T
)  o.  T ) `
 x )  e. 
~H )
93 normcl 25746 . . . . . . . . . . . 12  |-  ( ( ( ( adjh `  T
)  o.  T ) `
 x )  e. 
~H  ->  ( normh `  (
( ( adjh `  T
)  o.  T ) `
 x ) )  e.  RR )
9492, 93syl 16 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  e.  RR )
9594adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  e.  RR )
9638adantr 465 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  x )  e.  RR )
97 normge0 25747 . . . . . . . . . . . . . . 15  |-  ( ( ( adjh `  T
) `  ( T `  x ) )  e. 
~H  ->  0  <_  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) ) )
9819, 20, 973syl 20 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  0  <_  ( normh `  ( ( adjh `  T ) `  ( T `  x ) ) ) )
9922, 98jca 532 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  e.  RR  /\  0  <_  ( normh `  ( ( adjh `  T
) `  ( T `  x ) ) ) ) )
10099adantr 465 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  e.  RR  /\  0  <_  ( normh `  ( ( adjh `  T
) `  ( T `  x ) ) ) ) )
101 simpr 461 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  x )  <_ 
1 )
102 lemul2a 10397 . . . . . . . . . . . . 13  |-  ( ( ( ( normh `  x
)  e.  RR  /\  1  e.  RR  /\  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  e.  RR  /\  0  <_  ( normh `  ( ( adjh `  T
) `  ( T `  x ) ) ) ) )  /\  ( normh `  x )  <_ 
1 )  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) )  <_  ( ( normh `  ( ( adjh `  T
) `  ( T `  x ) ) )  x.  1 ) )
10344, 102mp3anl2 1319 . . . . . . . . . . . 12  |-  ( ( ( ( normh `  x
)  e.  RR  /\  ( ( normh `  (
( adjh `  T ) `  ( T `  x
) ) )  e.  RR  /\  0  <_ 
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) ) ) )  /\  ( normh `  x
)  <_  1 )  ->  ( ( normh `  ( ( adjh `  T
) `  ( T `  x ) ) )  x.  ( normh `  x
) )  <_  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  1 ) )
10496, 100, 101, 103syl21anc 1227 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) )  <_  ( ( normh `  ( ( adjh `  T
) `  ( T `  x ) ) )  x.  1 ) )
10522recnd 9622 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( normh `  ( ( adjh `  T ) `  ( T `  x )
) )  e.  CC )
106105mulid1d 9613 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  1 )  =  ( normh `  ( ( adjh `  T
) `  ( T `  x ) ) ) )
107106, 17eqtr4d 2511 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  1 )  =  ( normh `  ( ( ( adjh `  T )  o.  T
) `  x )
) )
108107adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  1 )  =  ( normh `  ( ( ( adjh `  T )  o.  T
) `  x )
) )
109104, 108breqtrd 4471 . . . . . . . . . 10  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) )  <_  ( normh `  (
( ( adjh `  T
)  o.  T ) `
 x ) ) )
110 remulcl 9577 . . . . . . . . . . . . 13  |-  ( ( ( normop `  ( ( adjh `  T )  o.  T ) )  e.  RR  /\  ( normh `  x )  e.  RR )  ->  ( ( normop `  ( ( adjh `  T
)  o.  T ) )  x.  ( normh `  x ) )  e.  RR )
11175, 38, 110sylancr 663 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( normop `  ( ( adjh `  T )  o.  T ) )  x.  ( normh `  x )
)  e.  RR )
112111adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  ( ( adjh `  T )  o.  T ) )  x.  ( normh `  x )
)  e.  RR )
11373nmbdoplbi 26647 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  <_  (
( normop `  ( ( adjh `  T )  o.  T ) )  x.  ( normh `  x )
) )
114113adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  <_  (
( normop `  ( ( adjh `  T )  o.  T ) )  x.  ( normh `  x )
) )
11575, 72pm3.2i 455 . . . . . . . . . . . . . . 15  |-  ( (
normop `  ( ( adjh `  T )  o.  T
) )  e.  RR  /\  0  <_  ( normop `  (
( adjh `  T )  o.  T ) ) )
116 lemul2a 10397 . . . . . . . . . . . . . . 15  |-  ( ( ( ( normh `  x
)  e.  RR  /\  1  e.  RR  /\  (
( normop `  ( ( adjh `  T )  o.  T ) )  e.  RR  /\  0  <_ 
( normop `  ( ( adjh `  T )  o.  T ) ) ) )  /\  ( normh `  x )  <_  1
)  ->  ( ( normop `  ( ( adjh `  T
)  o.  T ) )  x.  ( normh `  x ) )  <_ 
( ( normop `  (
( adjh `  T )  o.  T ) )  x.  1 ) )
117115, 116mp3anl3 1320 . . . . . . . . . . . . . 14  |-  ( ( ( ( normh `  x
)  e.  RR  /\  1  e.  RR )  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  ( ( adjh `  T )  o.  T ) )  x.  ( normh `  x )
)  <_  ( ( normop `  ( ( adjh `  T
)  o.  T ) )  x.  1 ) )
11844, 117mpanl2 681 . . . . . . . . . . . . 13  |-  ( ( ( normh `  x )  e.  RR  /\  ( normh `  x )  <_  1
)  ->  ( ( normop `  ( ( adjh `  T
)  o.  T ) )  x.  ( normh `  x ) )  <_ 
( ( normop `  (
( adjh `  T )  o.  T ) )  x.  1 ) )
11938, 118sylan 471 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  ( ( adjh `  T )  o.  T ) )  x.  ( normh `  x )
)  <_  ( ( normop `  ( ( adjh `  T
)  o.  T ) )  x.  1 ) )
12075recni 9608 . . . . . . . . . . . . 13  |-  ( normop `  ( ( adjh `  T
)  o.  T ) )  e.  CC
121120mulid1i 9598 . . . . . . . . . . . 12  |-  ( (
normop `  ( ( adjh `  T )  o.  T
) )  x.  1 )  =  ( normop `  ( ( adjh `  T
)  o.  T ) )
122119, 121syl6breq 4486 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normop `  ( ( adjh `  T )  o.  T ) )  x.  ( normh `  x )
)  <_  ( normop `  (
( adjh `  T )  o.  T ) ) )
12395, 112, 88, 114, 122letrd 9738 . . . . . . . . . 10  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( ( (
adjh `  T )  o.  T ) `  x
) )  <_  ( normop `  ( ( adjh `  T
)  o.  T ) ) )
12487, 95, 88, 109, 123letrd 9738 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( ( adjh `  T ) `  ( T `  x ) ) )  x.  ( normh `  x ) )  <_  ( normop `  (
( adjh `  T )  o.  T ) ) )
12585, 87, 88, 91, 124letrd 9738 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( abs `  ( ( (
adjh `  T ) `  ( T `  x
) )  .ih  x
) )  <_  ( normop `  ( ( adjh `  T
)  o.  T ) ) )
126 resqcl 12203 . . . . . . . . . . . 12  |-  ( (
normh `  ( T `  x ) )  e.  RR  ->  ( ( normh `  ( T `  x ) ) ^
2 )  e.  RR )
127 sqge0 12212 . . . . . . . . . . . 12  |-  ( (
normh `  ( T `  x ) )  e.  RR  ->  0  <_  ( ( normh `  ( T `  x ) ) ^
2 ) )
128126, 127absidd 13217 . . . . . . . . . . 11  |-  ( (
normh `  ( T `  x ) )  e.  RR  ->  ( abs `  ( ( normh `  ( T `  x )
) ^ 2 ) )  =  ( (
normh `  ( T `  x ) ) ^
2 ) )
12919, 26, 1283syl 20 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( abs `  ( ( normh `  ( T `  x
) ) ^ 2 ) )  =  ( ( normh `  ( T `  x ) ) ^
2 ) )
130 normsq 25755 . . . . . . . . . . . . 13  |-  ( ( T `  x )  e.  ~H  ->  (
( normh `  ( T `  x ) ) ^
2 )  =  ( ( T `  x
)  .ih  ( T `  x ) ) )
13119, 130syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( normh `  ( T `  x ) ) ^
2 )  =  ( ( T `  x
)  .ih  ( T `  x ) ) )
132 bdopadj 26705 . . . . . . . . . . . . . . . 16  |-  ( (
adjh `  T )  e. 
BndLinOp  ->  ( adjh `  T
)  e.  dom  adjh )
1333, 132ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( adjh `  T )  e.  dom  adjh
134 adj2 26557 . . . . . . . . . . . . . . 15  |-  ( ( ( adjh `  T
)  e.  dom  adjh  /\  ( T `  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( adjh `  T ) `  ( T `  x )
)  .ih  x )  =  ( ( T `
 x )  .ih  ( ( adjh `  ( adjh `  T ) ) `
 x ) ) )
135133, 134mp3an1 1311 . . . . . . . . . . . . . 14  |-  ( ( ( T `  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( adjh `  T ) `  ( T `  x )
)  .ih  x )  =  ( ( T `
 x )  .ih  ( ( adjh `  ( adjh `  T ) ) `
 x ) ) )
13619, 135mpancom 669 . . . . . . . . . . . . 13  |-  ( x  e.  ~H  ->  (
( ( adjh `  T
) `  ( T `  x ) )  .ih  x )  =  ( ( T `  x
)  .ih  ( ( adjh `  ( adjh `  T
) ) `  x
) ) )
137 bdopadj 26705 . . . . . . . . . . . . . . . 16  |-  ( T  e.  BndLinOp  ->  T  e.  dom  adjh )
138 adjadj 26559 . . . . . . . . . . . . . . . 16  |-  ( T  e.  dom  adjh  ->  (
adjh `  ( adjh `  T ) )  =  T )
1391, 137, 138mp2b 10 . . . . . . . . . . . . . . 15  |-  ( adjh `  ( adjh `  T
) )  =  T
140139fveq1i 5867 . . . . . . . . . . . . . 14  |-  ( (
adjh `  ( adjh `  T ) ) `  x )  =  ( T `  x )
141140oveq2i 6295 . . . . . . . . . . . . 13  |-  ( ( T `  x ) 
.ih  ( ( adjh `  ( adjh `  T
) ) `  x
) )  =  ( ( T `  x
)  .ih  ( T `  x ) )
142136, 141syl6req 2525 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  (
( T `  x
)  .ih  ( T `  x ) )  =  ( ( ( adjh `  T ) `  ( T `  x )
)  .ih  x )
)
143131, 142eqtrd 2508 . . . . . . . . . . 11  |-  ( x  e.  ~H  ->  (
( normh `  ( T `  x ) ) ^
2 )  =  ( ( ( adjh `  T
) `  ( T `  x ) )  .ih  x ) )
144143fveq2d 5870 . . . . . . . . . 10  |-  ( x  e.  ~H  ->  ( abs `  ( ( normh `  ( T `  x
) ) ^ 2 ) )  =  ( abs `  ( ( ( adjh `  T
) `  ( T `  x ) )  .ih  x ) ) )
145129, 144eqtr3d 2510 . . . . . . . . 9  |-  ( x  e.  ~H  ->  (
( normh `  ( T `  x ) ) ^
2 )  =  ( abs `  ( ( ( adjh `  T
) `  ( T `  x ) )  .ih  x ) ) )
146145adantr 465 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( T `  x ) ) ^
2 )  =  ( abs `  ( ( ( adjh `  T
) `  ( T `  x ) )  .ih  x ) ) )
14775sqsqrti 13171 . . . . . . . . . 10  |-  ( 0  <_  ( normop `  (
( adjh `  T )  o.  T ) )  -> 
( ( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 )  =  ( normop `  ( ( adjh `  T
)  o.  T ) ) )
1488, 71, 147mp2b 10 . . . . . . . . 9  |-  ( ( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 )  =  ( normop `  ( ( adjh `  T
)  o.  T ) )
149148a1i 11 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 )  =  ( normop `  ( ( adjh `  T
)  o.  T ) ) )
150125, 146, 1493brtr4d 4477 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( T `  x ) ) ^
2 )  <_  (
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 ) )
151 normge0 25747 . . . . . . . . . 10  |-  ( ( T `  x )  e.  ~H  ->  0  <_  ( normh `  ( T `  x ) ) )
15219, 151syl 16 . . . . . . . . 9  |-  ( x  e.  ~H  ->  0  <_  ( normh `  ( T `  x ) ) )
1538, 71, 76mp2b 10 . . . . . . . . . 10  |-  ( sqr `  ( normop `  ( ( adjh `  T )  o.  T ) ) )  e.  RR
15475sqrtge0i 13172 . . . . . . . . . . 11  |-  ( 0  <_  ( normop `  (
( adjh `  T )  o.  T ) )  -> 
0  <_  ( sqr `  ( normop `  ( ( adjh `  T )  o.  T ) ) ) )
1558, 71, 154mp2b 10 . . . . . . . . . 10  |-  0  <_  ( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )
156 le2sq 12210 . . . . . . . . . 10  |-  ( ( ( ( normh `  ( T `  x )
)  e.  RR  /\  0  <_  ( normh `  ( T `  x )
) )  /\  (
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  e.  RR  /\  0  <_  ( sqr `  ( normop `  ( ( adjh `  T )  o.  T ) ) ) ) )  ->  (
( normh `  ( T `  x ) )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  <->  ( ( normh `  ( T `  x ) ) ^
2 )  <_  (
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 ) ) )
157153, 155, 156mpanr12 685 . . . . . . . . 9  |-  ( ( ( normh `  ( T `  x ) )  e.  RR  /\  0  <_ 
( normh `  ( T `  x ) ) )  ->  ( ( normh `  ( T `  x
) )  <_  ( sqr `  ( normop `  (
( adjh `  T )  o.  T ) ) )  <-> 
( ( normh `  ( T `  x )
) ^ 2 )  <_  ( ( sqr `  ( normop `  ( ( adjh `  T )  o.  T ) ) ) ^ 2 ) ) )
15827, 152, 157syl2anc 661 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( normh `  ( T `  x ) )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  <->  ( ( normh `  ( T `  x ) ) ^
2 )  <_  (
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 ) ) )
159158adantr 465 . . . . . . 7  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  (
( normh `  ( T `  x ) )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  <->  ( ( normh `  ( T `  x ) ) ^
2 )  <_  (
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 ) ) )
160150, 159mpbird 232 . . . . . 6  |-  ( ( x  e.  ~H  /\  ( normh `  x )  <_  1 )  ->  ( normh `  ( T `  x ) )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) )
161160ex 434 . . . . 5  |-  ( x  e.  ~H  ->  (
( normh `  x )  <_  1  ->  ( normh `  ( T `  x
) )  <_  ( sqr `  ( normop `  (
( adjh `  T )  o.  T ) ) ) ) )
16280, 161mprgbir 2828 . . . 4  |-  ( normop `  T )  <_  ( sqr `  ( normop `  (
( adjh `  T )  o.  T ) ) )
16310, 153le2sqi 12225 . . . . 5  |-  ( ( 0  <_  ( normop `  T
)  /\  0  <_  ( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) )  -> 
( ( normop `  T
)  <_  ( sqr `  ( normop `  ( ( adjh `  T )  o.  T ) ) )  <-> 
( ( normop `  T
) ^ 2 )  <_  ( ( sqr `  ( normop `  ( ( adjh `  T )  o.  T ) ) ) ^ 2 ) ) )
16446, 155, 163mp2an 672 . . . 4  |-  ( (
normop `  T )  <_ 
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) )  <->  ( ( normop `  T ) ^ 2 )  <_  ( ( sqr `  ( normop `  (
( adjh `  T )  o.  T ) ) ) ^ 2 ) )
165162, 164mpbi 208 . . 3  |-  ( (
normop `  T ) ^
2 )  <_  (
( sqr `  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) ^ 2 )
166165, 148breqtri 4470 . 2  |-  ( (
normop `  T ) ^
2 )  <_  ( normop `  ( ( adjh `  T
)  o.  T ) )
16775, 11letri3i 9700 . 2  |-  ( (
normop `  ( ( adjh `  T )  o.  T
) )  =  ( ( normop `  T ) ^ 2 )  <->  ( ( normop `  ( ( adjh `  T
)  o.  T ) )  <_  ( ( normop `  T ) ^ 2 )  /\  ( (
normop `  T ) ^
2 )  <_  ( normop `  ( ( adjh `  T
)  o.  T ) ) ) )
16870, 166, 167mpbir2an 918 1  |-  ( normop `  ( ( adjh `  T
)  o.  T ) )  =  ( (
normop `  T ) ^
2 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   class class class wbr 4447   dom cdm 4999    o. ccom 5003   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    x. cmul 9497   RR*cxr 9627    <_ cle 9629   2c2 10585   ^cexp 12134   sqrcsqrt 13029   abscabs 13030   ~Hchil 25540    .ih csp 25543   normhcno 25544   normopcnop 25566   BndLinOpcbo 25569   adjhcado 25576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cc 8815  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572  ax-hilex 25620  ax-hfvadd 25621  ax-hvcom 25622  ax-hvass 25623  ax-hv0cl 25624  ax-hvaddid 25625  ax-hfvmul 25626  ax-hvmulid 25627  ax-hvmulass 25628  ax-hvdistr1 25629  ax-hvdistr2 25630  ax-hvmul0 25631  ax-hfi 25700  ax-his1 25703  ax-his2 25704  ax-his3 25705  ax-his4 25706  ax-hcompl 25823
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-acn 8323  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-cn 19522  df-cnp 19523  df-lm 19524  df-t1 19609  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cfil 21457  df-cau 21458  df-cmet 21459  df-grpo 24897  df-gid 24898  df-ginv 24899  df-gdiv 24900  df-ablo 24988  df-subgo 25008  df-vc 25143  df-nv 25189  df-va 25192  df-ba 25193  df-sm 25194  df-0v 25195  df-vs 25196  df-nmcv 25197  df-ims 25198  df-dip 25315  df-ssp 25339  df-lno 25363  df-nmoo 25364  df-0o 25366  df-ph 25432  df-cbn 25483  df-hnorm 25589  df-hba 25590  df-hvsub 25592  df-hlim 25593  df-hcau 25594  df-sh 25828  df-ch 25843  df-oc 25874  df-ch0 25875  df-shs 25930  df-pjh 26017  df-h0op 26371  df-nmop 26462  df-cnop 26463  df-lnop 26464  df-bdop 26465  df-unop 26466  df-hmop 26467  df-nmfn 26468  df-nlfn 26469  df-cnfn 26470  df-lnfn 26471  df-adjh 26472
This theorem is referenced by:  nmopcoadj2i  26725
  Copyright terms: Public domain W3C validator