MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooval Structured version   Unicode version

Theorem nmooval 25501
Description: The operator norm function. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1  |-  X  =  ( BaseSet `  U )
nmoofval.2  |-  Y  =  ( BaseSet `  W )
nmoofval.3  |-  L  =  ( normCV `  U )
nmoofval.4  |-  M  =  ( normCV `  W )
nmoofval.6  |-  N  =  ( U normOpOLD W
)
Assertion
Ref Expression
nmooval  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } ,  RR* ,  <  ) )
Distinct variable groups:    x, z, U    x, W, z    z, X    x, Y    x, T, z
Allowed substitution hints:    L( x, z)    M( x, z)    N( x, z)    X( x)    Y( z)

Proof of Theorem nmooval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 nmoofval.2 . . . . 5  |-  Y  =  ( BaseSet `  W )
2 fvex 5882 . . . . 5  |-  ( BaseSet `  W )  e.  _V
31, 2eqeltri 2551 . . . 4  |-  Y  e. 
_V
4 nmoofval.1 . . . . 5  |-  X  =  ( BaseSet `  U )
5 fvex 5882 . . . . 5  |-  ( BaseSet `  U )  e.  _V
64, 5eqeltri 2551 . . . 4  |-  X  e. 
_V
73, 6elmap 7459 . . 3  |-  ( T  e.  ( Y  ^m  X )  <->  T : X
--> Y )
8 nmoofval.3 . . . . . 6  |-  L  =  ( normCV `  U )
9 nmoofval.4 . . . . . 6  |-  M  =  ( normCV `  W )
10 nmoofval.6 . . . . . 6  |-  N  =  ( U normOpOLD W
)
114, 1, 8, 9, 10nmoofval 25500 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  N  =  ( t  e.  ( Y  ^m  X
)  |->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
1211fveq1d 5874 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  T )  =  ( ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
) `  T )
)
13 fveq1 5871 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
t `  z )  =  ( T `  z ) )
1413fveq2d 5876 . . . . . . . . . 10  |-  ( t  =  T  ->  ( M `  ( t `  z ) )  =  ( M `  ( T `  z )
) )
1514eqeq2d 2481 . . . . . . . . 9  |-  ( t  =  T  ->  (
x  =  ( M `
 ( t `  z ) )  <->  x  =  ( M `  ( T `
 z ) ) ) )
1615anbi2d 703 . . . . . . . 8  |-  ( t  =  T  ->  (
( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) )  <-> 
( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) ) )
1716rexbidv 2978 . . . . . . 7  |-  ( t  =  T  ->  ( E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) )  <->  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) ) )
1817abbidv 2603 . . . . . 6  |-  ( t  =  T  ->  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) }  =  { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } )
1918supeq1d 7918 . . . . 5  |-  ( t  =  T  ->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } ,  RR* ,  <  ) )
20 eqid 2467 . . . . 5  |-  ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
)  =  ( t  e.  ( Y  ^m  X )  |->  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( t `  z
) ) ) } ,  RR* ,  <  )
)
21 xrltso 11359 . . . . . 6  |-  <  Or  RR*
2221supex 7935 . . . . 5  |-  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  e.  _V
2319, 20, 22fvmpt 5957 . . . 4  |-  ( T  e.  ( Y  ^m  X )  ->  (
( t  e.  ( Y  ^m  X ) 
|->  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) `  T )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z )
) ) } ,  RR* ,  <  ) )
2412, 23sylan9eq 2528 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  ( Y  ^m  X ) )  -> 
( N `  T
)  =  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
257, 24sylan2br 476 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T : X --> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  (
( L `  z
)  <_  1  /\  x  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
26253impa 1191 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  ( ( L `  z )  <_  1  /\  x  =  ( M `  ( T `  z ) ) ) } ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452   E.wrex 2818   _Vcvv 3118   class class class wbr 4453    |-> cmpt 4511   -->wf 5590   ` cfv 5594  (class class class)co 6295    ^m cmap 7432   supcsup 7912   1c1 9505   RR*cxr 9639    < clt 9640    <_ cle 9641   NrmCVeccnv 25300   BaseSetcba 25302   normCVcnmcv 25306   normOpOLDcnmoo 25479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-pre-lttri 9578  ax-pre-lttrn 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-nmoo 25483
This theorem is referenced by:  nmoxr  25504  nmooge0  25505  nmorepnf  25506  nmoolb  25509  nmoubi  25510  nmoo0  25529  nmlno0lem  25531
  Copyright terms: Public domain W3C validator