MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmooge0 Structured version   Unicode version

Theorem nmooge0 25883
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoxr.1  |-  X  =  ( BaseSet `  U )
nmoxr.2  |-  Y  =  ( BaseSet `  W )
nmoxr.3  |-  N  =  ( U normOpOLD W
)
Assertion
Ref Expression
nmooge0  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  <_  ( N `  T
) )

Proof of Theorem nmooge0
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 9629 . . 3  |-  0  e.  RR*
21a1i 11 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  e.  RR* )
3 simp2 995 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  W  e.  NrmCVec )
4 nmoxr.1 . . . . . . . 8  |-  X  =  ( BaseSet `  U )
5 eqid 2454 . . . . . . . 8  |-  ( 0vec `  U )  =  (
0vec `  U )
64, 5nvzcl 25730 . . . . . . 7  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  X )
7 ffvelrn 6005 . . . . . . 7  |-  ( ( T : X --> Y  /\  ( 0vec `  U )  e.  X )  ->  ( T `  ( 0vec `  U ) )  e.  Y )
86, 7sylan2 472 . . . . . 6  |-  ( ( T : X --> Y  /\  U  e.  NrmCVec )  -> 
( T `  ( 0vec `  U ) )  e.  Y )
98ancoms 451 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  T : X --> Y )  -> 
( T `  ( 0vec `  U ) )  e.  Y )
1093adant2 1013 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( T `  ( 0vec `  U ) )  e.  Y )
11 nmoxr.2 . . . . 5  |-  Y  =  ( BaseSet `  W )
12 eqid 2454 . . . . 5  |-  ( normCV `  W )  =  (
normCV
`  W )
1311, 12nvcl 25763 . . . 4  |-  ( ( W  e.  NrmCVec  /\  ( T `  ( 0vec `  U ) )  e.  Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  RR )
143, 10, 13syl2anc 659 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  RR )
1514rexrd 9632 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  RR* )
16 nmoxr.3 . . 3  |-  N  =  ( U normOpOLD W
)
174, 11, 16nmoxr 25882 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  e.  RR* )
1811, 12nvge0 25778 . . 3  |-  ( ( W  e.  NrmCVec  /\  ( T `  ( 0vec `  U ) )  e.  Y )  ->  0  <_  ( ( normCV `  W
) `  ( T `  ( 0vec `  U
) ) ) )
193, 10, 18syl2anc 659 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  <_  ( ( normCV `  W
) `  ( T `  ( 0vec `  U
) ) ) )
2011, 12nmosetre 25880 . . . . . . 7  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( T `  z ) ) ) }  C_  RR )
21 ressxr 9626 . . . . . . 7  |-  RR  C_  RR*
2220, 21syl6ss 3501 . . . . . 6  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( T `  z ) ) ) }  C_  RR* )
23 eqid 2454 . . . . . . 7  |-  ( normCV `  U )  =  (
normCV
`  U )
244, 5, 23nmosetn0 25881 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } )
25 supxrub 11519 . . . . . 6  |-  ( ( { x  |  E. z  e.  X  (
( ( normCV `  U
) `  z )  <_  1  /\  x  =  ( ( normCV `  W
) `  ( T `  z ) ) ) }  C_  RR*  /\  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  e.  { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } )  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
2622, 24, 25syl2an 475 . . . . 5  |-  ( ( ( W  e.  NrmCVec  /\  T : X --> Y )  /\  U  e.  NrmCVec )  ->  ( ( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
27263impa 1189 . . . 4  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y  /\  U  e.  NrmCVec )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
28273comr 1202 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
294, 11, 23, 12, 16nmooval 25879 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { x  |  E. z  e.  X  ( ( ( normCV `  U ) `  z
)  <_  1  /\  x  =  ( ( normCV `  W ) `  ( T `  z )
) ) } ,  RR* ,  <  ) )
3028, 29breqtrrd 4465 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  (
( normCV `  W ) `  ( T `  ( 0vec `  U ) ) )  <_  ( N `  T ) )
312, 15, 17, 19, 30xrletrd 11368 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  0  <_  ( N `  T
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   {cab 2439   E.wrex 2805    C_ wss 3461   class class class wbr 4439   -->wf 5566   ` cfv 5570  (class class class)co 6270   supcsup 7892   RRcr 9480   0cc0 9481   1c1 9482   RR*cxr 9616    < clt 9617    <_ cle 9618   NrmCVeccnv 25678   BaseSetcba 25680   0veccn0v 25682   normCVcnmcv 25684   normOpOLDcnmoo 25857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-grpo 25394  df-gid 25395  df-ginv 25396  df-ablo 25485  df-vc 25640  df-nv 25686  df-va 25689  df-ba 25690  df-sm 25691  df-0v 25692  df-nmcv 25694  df-nmoo 25861
This theorem is referenced by:  nmlnogt0  25913  htthlem  26035
  Copyright terms: Public domain W3C validator