MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndseqiOLD Structured version   Unicode version

Theorem nmobndseqiOLD 25509
Description: A bounded sequence determines a bounded operator. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOpOLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmobndseqiOLD  |-  ( ( T : X --> Y  /\  A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )
)  ->  ( N `  T )  e.  RR )
Distinct variable groups:    f, k, L    k, Y    f, M, k    T, f, k    f, X, k    k, N
Allowed substitution hints:    U( f, k)    N( f)    W( f, k)    Y( f)

Proof of Theorem nmobndseqiOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 impexp 446 . . . . . 6  |-  ( ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k
) )  <_  1
)  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  <->  ( f : NN --> X  -> 
( A. k  e.  NN  ( L `  ( f `  k
) )  <_  1  ->  E. k  e.  NN  ( M `  ( T `
 ( f `  k ) ) )  <_  k ) ) )
2 r19.35 3013 . . . . . . 7  |-  ( E. k  e.  NN  (
( L `  (
f `  k )
)  <_  1  ->  ( M `  ( T `
 ( f `  k ) ) )  <_  k )  <->  ( A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )
)
32imbi2i 312 . . . . . 6  |-  ( ( f : NN --> X  ->  E. k  e.  NN  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) )  <-> 
( f : NN --> X  ->  ( A. k  e.  NN  ( L `  ( f `  k
) )  <_  1  ->  E. k  e.  NN  ( M `  ( T `
 ( f `  k ) ) )  <_  k ) ) )
41, 3bitr4i 252 . . . . 5  |-  ( ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k
) )  <_  1
)  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  <->  ( f : NN --> X  ->  E. k  e.  NN  ( ( L `  ( f `  k
) )  <_  1  ->  ( M `  ( T `  ( f `  k ) ) )  <_  k ) ) )
54albii 1620 . . . 4  |-  ( A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  <->  A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) ) )
6 nnex 10554 . . . . . 6  |-  NN  e.  _V
7 fveq2 5872 . . . . . . . 8  |-  ( y  =  ( f `  k )  ->  ( L `  y )  =  ( L `  ( f `  k
) ) )
87breq1d 4463 . . . . . . 7  |-  ( y  =  ( f `  k )  ->  (
( L `  y
)  <_  1  <->  ( L `  ( f `  k
) )  <_  1
) )
9 fveq2 5872 . . . . . . . . 9  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
109fveq2d 5876 . . . . . . . 8  |-  ( y  =  ( f `  k )  ->  ( M `  ( T `  y ) )  =  ( M `  ( T `  ( f `  k ) ) ) )
1110breq1d 4463 . . . . . . 7  |-  ( y  =  ( f `  k )  ->  (
( M `  ( T `  y )
)  <_  k  <->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )
128, 11imbi12d 320 . . . . . 6  |-  ( y  =  ( f `  k )  ->  (
( ( L `  y )  <_  1  ->  ( M `  ( T `  y )
)  <_  k )  <->  ( ( L `  (
f `  k )
)  <_  1  ->  ( M `  ( T `
 ( f `  k ) ) )  <_  k ) ) )
136, 12ac6n 8877 . . . . 5  |-  ( A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )  ->  E. k  e.  NN  A. y  e.  X  ( ( L `
 y )  <_ 
1  ->  ( M `  ( T `  y
) )  <_  k
) )
14 nnre 10555 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  RR )
1514anim1i 568 . . . . . 6  |-  ( ( k  e.  NN  /\  A. y  e.  X  ( ( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )  ->  ( k  e.  RR  /\  A. y  e.  X  ( ( L `  y )  <_  1  ->  ( M `  ( T `  y
) )  <_  k
) ) )
1615reximi2 2934 . . . . 5  |-  ( E. k  e.  NN  A. y  e.  X  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k )  ->  E. k  e.  RR  A. y  e.  X  ( ( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )
1713, 16syl 16 . . . 4  |-  ( A. f ( f : NN --> X  ->  E. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  ->  ( M `  ( T `  (
f `  k )
) )  <_  k
) )  ->  E. k  e.  RR  A. y  e.  X  ( ( L `
 y )  <_ 
1  ->  ( M `  ( T `  y
) )  <_  k
) )
185, 17sylbi 195 . . 3  |-  ( A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  ->  E. k  e.  RR  A. y  e.  X  ( ( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) )
19 nmoubi.1 . . . 4  |-  X  =  ( BaseSet `  U )
20 nmoubi.y . . . 4  |-  Y  =  ( BaseSet `  W )
21 nmoubi.l . . . 4  |-  L  =  ( normCV `  U )
22 nmoubi.m . . . 4  |-  M  =  ( normCV `  W )
23 nmoubi.3 . . . 4  |-  N  =  ( U normOpOLD W
)
24 nmoubi.u . . . 4  |-  U  e.  NrmCVec
25 nmoubi.w . . . 4  |-  W  e.  NrmCVec
2619, 20, 21, 22, 23, 24, 25nmobndi 25504 . . 3  |-  ( T : X --> Y  -> 
( ( N `  T )  e.  RR  <->  E. k  e.  RR  A. y  e.  X  (
( L `  y
)  <_  1  ->  ( M `  ( T `
 y ) )  <_  k ) ) )
2718, 26syl5ibr 221 . 2  |-  ( T : X --> Y  -> 
( A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k
) )  <_  1
)  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )  ->  ( N `  T
)  e.  RR ) )
2827imp 429 1  |-  ( ( T : X --> Y  /\  A. f ( ( f : NN --> X  /\  A. k  e.  NN  ( L `  ( f `  k ) )  <_ 
1 )  ->  E. k  e.  NN  ( M `  ( T `  ( f `
 k ) ) )  <_  k )
)  ->  ( N `  T )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   class class class wbr 4453   -->wf 5590   ` cfv 5594  (class class class)co 6295   RRcr 9503   1c1 9505    <_ cle 9641   NNcn 10548   NrmCVeccnv 25291   BaseSetcba 25293   normCVcnmcv 25297   normOpOLDcnmoo 25470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-reg 8030  ax-inf2 8070  ax-ac2 8855  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-r1 8194  df-rank 8195  df-card 8332  df-ac 8509  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-grpo 25007  df-gid 25008  df-ginv 25009  df-ablo 25098  df-vc 25253  df-nv 25299  df-va 25302  df-ba 25303  df-sm 25304  df-0v 25305  df-nmcv 25307  df-nmoo 25474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator