MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0lem Structured version   Visualization version   Unicode version

Theorem nmlno0lem 26434
Description: Lemma for nmlno0i 26435. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3  |-  N  =  ( U normOpOLD W
)
nmlno0.0  |-  Z  =  ( U  0op  W
)
nmlno0.7  |-  L  =  ( U  LnOp  W
)
nmlno0lem.u  |-  U  e.  NrmCVec
nmlno0lem.w  |-  W  e.  NrmCVec
nmlno0lem.l  |-  T  e.  L
nmlno0lem.1  |-  X  =  ( BaseSet `  U )
nmlno0lem.2  |-  Y  =  ( BaseSet `  W )
nmlno0lem.r  |-  R  =  ( .sOLD `  U )
nmlno0lem.s  |-  S  =  ( .sOLD `  W )
nmlno0lem.p  |-  P  =  ( 0vec `  U
)
nmlno0lem.q  |-  Q  =  ( 0vec `  W
)
nmlno0lem.k  |-  K  =  ( normCV `  U )
nmlno0lem.m  |-  M  =  ( normCV `  W )
Assertion
Ref Expression
nmlno0lem  |-  ( ( N `  T )  =  0  <->  T  =  Z )

Proof of Theorem nmlno0lem
Dummy variables  y 
z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmlno0lem.u . . . . . . . . . . . . . . 15  |-  U  e.  NrmCVec
2 nmlno0lem.1 . . . . . . . . . . . . . . . 16  |-  X  =  ( BaseSet `  U )
3 nmlno0lem.k . . . . . . . . . . . . . . . 16  |-  K  =  ( normCV `  U )
42, 3nvcl 26288 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  ( K `  x )  e.  RR )
51, 4mpan 676 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  ( K `  x )  e.  RR )
65recnd 9669 . . . . . . . . . . . . 13  |-  ( x  e.  X  ->  ( K `  x )  e.  CC )
76adantr 467 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  x
)  e.  CC )
8 nmlno0lem.p . . . . . . . . . . . . . . . . 17  |-  P  =  ( 0vec `  U
)
92, 8, 3nvz 26298 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  (
( K `  x
)  =  0  <->  x  =  P ) )
101, 9mpan 676 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  ->  (
( K `  x
)  =  0  <->  x  =  P ) )
11 fveq2 5865 . . . . . . . . . . . . . . . 16  |-  ( x  =  P  ->  ( T `  x )  =  ( T `  P ) )
12 nmlno0lem.w . . . . . . . . . . . . . . . . 17  |-  W  e.  NrmCVec
13 nmlno0lem.l . . . . . . . . . . . . . . . . 17  |-  T  e.  L
14 nmlno0lem.2 . . . . . . . . . . . . . . . . . 18  |-  Y  =  ( BaseSet `  W )
15 nmlno0lem.q . . . . . . . . . . . . . . . . . 18  |-  Q  =  ( 0vec `  W
)
16 nmlno0.7 . . . . . . . . . . . . . . . . . 18  |-  L  =  ( U  LnOp  W
)
172, 14, 8, 15, 16lno0 26397 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  P )  =  Q )
181, 12, 13, 17mp3an 1364 . . . . . . . . . . . . . . . 16  |-  ( T `
 P )  =  Q
1911, 18syl6eq 2501 . . . . . . . . . . . . . . 15  |-  ( x  =  P  ->  ( T `  x )  =  Q )
2010, 19syl6bi 232 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  (
( K `  x
)  =  0  -> 
( T `  x
)  =  Q ) )
2120necon3d 2645 . . . . . . . . . . . . 13  |-  ( x  e.  X  ->  (
( T `  x
)  =/=  Q  -> 
( K `  x
)  =/=  0 ) )
2221imp 431 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  x
)  =/=  0 )
237, 22recne0d 10377 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( 1  /  ( K `  x )
)  =/=  0 )
24 simpr 463 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( T `  x
)  =/=  Q )
257, 22reccld 10376 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( 1  /  ( K `  x )
)  e.  CC )
262, 14, 16lnof 26396 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> Y )
271, 12, 13, 26mp3an 1364 . . . . . . . . . . . . . . . 16  |-  T : X
--> Y
2827ffvelrni 6021 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  ->  ( T `  x )  e.  Y )
2928adantr 467 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( T `  x
)  e.  Y )
30 nmlno0lem.s . . . . . . . . . . . . . . . 16  |-  S  =  ( .sOLD `  W )
3114, 30, 15nvmul0or 26273 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  NrmCVec  /\  (
1  /  ( K `
 x ) )  e.  CC  /\  ( T `  x )  e.  Y )  ->  (
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  =  Q  <->  ( (
1  /  ( K `
 x ) )  =  0  \/  ( T `  x )  =  Q ) ) )
3212, 31mp3an1 1351 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  ( T `  x )  e.  Y )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =  Q  <-> 
( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) ) )
3325, 29, 32syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =  Q  <-> 
( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) ) )
3433necon3abid 2660 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  -.  ( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) ) )
35 neanior 2716 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( K `  x )
)  =/=  0  /\  ( T `  x
)  =/=  Q )  <->  -.  ( ( 1  / 
( K `  x
) )  =  0  \/  ( T `  x )  =  Q ) )
3634, 35syl6bbr 267 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  ( ( 1  /  ( K `  x )
)  =/=  0  /\  ( T `  x
)  =/=  Q ) ) )
3723, 24, 36mpbir2and 933 . . . . . . . . . 10  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  =/=  Q )
3814, 30nvscl 26247 . . . . . . . . . . . . 13  |-  ( ( W  e.  NrmCVec  /\  (
1  /  ( K `
 x ) )  e.  CC  /\  ( T `  x )  e.  Y )  ->  (
( 1  /  ( K `  x )
) S ( T `
 x ) )  e.  Y )
3912, 38mp3an1 1351 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  ( T `  x )  e.  Y )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  e.  Y )
4025, 29, 39syl2anc 667 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  e.  Y )
41 nmlno0lem.m . . . . . . . . . . . 12  |-  M  =  ( normCV `  W )
4214, 15, 41nvgt0 26304 . . . . . . . . . . 11  |-  ( ( W  e.  NrmCVec  /\  (
( 1  /  ( K `  x )
) S ( T `
 x ) )  e.  Y )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) ) )
4312, 40, 42sylancr 669 . . . . . . . . . 10  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( ( 1  /  ( K `  x ) ) S ( T `  x
) )  =/=  Q  <->  0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) ) )
4437, 43mpbid 214 . . . . . . . . 9  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) )
4544ex 436 . . . . . . . 8  |-  ( x  e.  X  ->  (
( T `  x
)  =/=  Q  -> 
0  <  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) ) ) )
4645adantl 468 . . . . . . 7  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( ( T `
 x )  =/= 
Q  ->  0  <  ( M `  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) ) ) )
4714, 41nmosetre 26405 . . . . . . . . . . . . . 14  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } 
C_  RR )
4812, 27, 47mp2an 678 . . . . . . . . . . . . 13  |-  { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) }  C_  RR
49 ressxr 9684 . . . . . . . . . . . . 13  |-  RR  C_  RR*
5048, 49sstri 3441 . . . . . . . . . . . 12  |-  { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) }  C_  RR*
51 simpl 459 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  ->  x  e.  X )
52 nmlno0lem.r . . . . . . . . . . . . . . . . 17  |-  R  =  ( .sOLD `  U )
532, 52nvscl 26247 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  (
1  /  ( K `
 x ) )  e.  CC  /\  x  e.  X )  ->  (
( 1  /  ( K `  x )
) R x )  e.  X )
541, 53mp3an1 1351 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  x  e.  X )  ->  ( ( 1  / 
( K `  x
) ) R x )  e.  X )
5525, 51, 54syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) R x )  e.  X )
5619necon3i 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( T `  x )  =/=  Q  ->  x  =/=  P )
572, 52, 8, 3nv1 26305 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  x  =/=  P )  ->  ( K `  ( (
1  /  ( K `
 x ) ) R x ) )  =  1 )
581, 57mp3an1 1351 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  x  =/=  P )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  =  1 )
5956, 58sylan2 477 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  =  1 )
60 1re 9642 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
6159, 60syl6eqel 2537 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  e.  RR )
62 eqle 9736 . . . . . . . . . . . . . . 15  |-  ( ( ( K `  (
( 1  /  ( K `  x )
) R x ) )  e.  RR  /\  ( K `  ( ( 1  /  ( K `
 x ) ) R x ) )  =  1 )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  <_  1 )
6361, 59, 62syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( K `  (
( 1  /  ( K `  x )
) R x ) )  <_  1 )
641, 12, 133pm3.2i 1186 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )
652, 52, 30, 16lnomul 26401 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  (
( 1  /  ( K `  x )
)  e.  CC  /\  x  e.  X )
)  ->  ( T `  ( ( 1  / 
( K `  x
) ) R x ) )  =  ( ( 1  /  ( K `  x )
) S ( T `
 x ) ) )
6664, 65mpan 676 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  /  ( K `  x )
)  e.  CC  /\  x  e.  X )  ->  ( T `  (
( 1  /  ( K `  x )
) R x ) )  =  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) )
6725, 51, 66syl2anc 667 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( T `  (
( 1  /  ( K `  x )
) R x ) )  =  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) )
6867eqcomd 2457 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( 1  / 
( K `  x
) ) S ( T `  x ) )  =  ( T `
 ( ( 1  /  ( K `  x ) ) R x ) ) )
6968fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) ) )
70 fveq2 5865 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  ( K `  z )  =  ( K `  ( ( 1  / 
( K `  x
) ) R x ) ) )
7170breq1d 4412 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  (
( K `  z
)  <_  1  <->  ( K `  ( ( 1  / 
( K `  x
) ) R x ) )  <_  1
) )
72 fveq2 5865 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  ( T `  z )  =  ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) )
7372fveq2d 5869 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  ( M `  ( T `  z ) )  =  ( M `  ( T `  ( (
1  /  ( K `
 x ) ) R x ) ) ) )
7473eqeq2d 2461 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  (
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) )  <->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  =  ( M `  ( T `
 ( ( 1  /  ( K `  x ) ) R x ) ) ) ) )
7571, 74anbi12d 717 . . . . . . . . . . . . . . 15  |-  ( z  =  ( ( 1  /  ( K `  x ) ) R x )  ->  (
( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) )  <-> 
( ( K `  ( ( 1  / 
( K `  x
) ) R x ) )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) ) ) ) )
7675rspcev 3150 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1  / 
( K `  x
) ) R x )  e.  X  /\  ( ( K `  ( ( 1  / 
( K `  x
) ) R x ) )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  ( ( 1  / 
( K `  x
) ) R x ) ) ) ) )  ->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) )  =  ( M `  ( T `  z )
) ) )
7755, 63, 69, 76syl12anc 1266 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  ->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) )
78 fvex 5875 . . . . . . . . . . . . . 14  |-  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) )  e. 
_V
79 eqeq1 2455 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  ->  (
y  =  ( M `
 ( T `  z ) )  <->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  =  ( M `  ( T `
 z ) ) ) )
8079anbi2d 710 . . . . . . . . . . . . . . 15  |-  ( y  =  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  ->  (
( ( K `  z )  <_  1  /\  y  =  ( M `  ( T `  z ) ) )  <-> 
( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) ) )
8180rexbidv 2901 . . . . . . . . . . . . . 14  |-  ( y  =  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  ->  ( E. z  e.  X  ( ( K `  z )  <_  1  /\  y  =  ( M `  ( T `  z ) ) )  <->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) ) )
8278, 81elab 3185 . . . . . . . . . . . . 13  |-  ( ( M `  ( ( 1  /  ( K `
 x ) ) S ( T `  x ) ) )  e.  { y  |  E. z  e.  X  ( ( K `  z )  <_  1  /\  y  =  ( M `  ( T `  z ) ) ) }  <->  E. z  e.  X  ( ( K `  z )  <_  1  /\  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  =  ( M `
 ( T `  z ) ) ) )
8377, 82sylibr 216 . . . . . . . . . . . 12  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) } )
84 supxrub 11610 . . . . . . . . . . . 12  |-  ( ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } 
C_  RR*  /\  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) )  e. 
{ y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } )  ->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
8550, 83, 84sylancr 669 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  <_  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
8685adantll 720 . . . . . . . . . 10  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )
)
87 nmlno0.3 . . . . . . . . . . . . . . 15  |-  N  =  ( U normOpOLD W
)
882, 14, 3, 41, 87nmooval 26404 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) } ,  RR* ,  <  ) )
891, 12, 27, 88mp3an 1364 . . . . . . . . . . . . 13  |-  ( N `
 T )  =  sup ( { y  |  E. z  e.  X  ( ( K `
 z )  <_ 
1  /\  y  =  ( M `  ( T `
 z ) ) ) } ,  RR* ,  <  )
9089eqeq1i 2456 . . . . . . . . . . . 12  |-  ( ( N `  T )  =  0  <->  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  =  0 )
9190biimpi 198 . . . . . . . . . . 11  |-  ( ( N `  T )  =  0  ->  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  =  0 )
9291ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  sup ( { y  |  E. z  e.  X  (
( K `  z
)  <_  1  /\  y  =  ( M `  ( T `  z
) ) ) } ,  RR* ,  <  )  =  0 )
9386, 92breqtrd 4427 . . . . . . . . 9  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  0
)
9414, 41nvcl 26288 . . . . . . . . . . . 12  |-  ( ( W  e.  NrmCVec  /\  (
( 1  /  ( K `  x )
) S ( T `
 x ) )  e.  Y )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  RR )
9512, 40, 94sylancr 669 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  RR )
96 0re 9643 . . . . . . . . . . 11  |-  0  e.  RR
97 lenlt 9712 . . . . . . . . . . 11  |-  ( ( ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) )  e.  RR  /\  0  e.  RR )  ->  ( ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  0  <->  -.  0  <  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) ) ) )
9895, 96, 97sylancl 668 . . . . . . . . . 10  |-  ( ( x  e.  X  /\  ( T `  x )  =/=  Q )  -> 
( ( M `  ( ( 1  / 
( K `  x
) ) S ( T `  x ) ) )  <_  0  <->  -.  0  <  ( M `
 ( ( 1  /  ( K `  x ) ) S ( T `  x
) ) ) ) )
9998adantll 720 . . . . . . . . 9  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  ( ( M `  ( (
1  /  ( K `
 x ) ) S ( T `  x ) ) )  <_  0  <->  -.  0  <  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) ) ) )
10093, 99mpbid 214 . . . . . . . 8  |-  ( ( ( ( N `  T )  =  0  /\  x  e.  X
)  /\  ( T `  x )  =/=  Q
)  ->  -.  0  <  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) ) )
101100ex 436 . . . . . . 7  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( ( T `
 x )  =/= 
Q  ->  -.  0  <  ( M `  (
( 1  /  ( K `  x )
) S ( T `
 x ) ) ) ) )
10246, 101pm2.65d 179 . . . . . 6  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  -.  ( T `  x )  =/=  Q
)
103 nne 2628 . . . . . 6  |-  ( -.  ( T `  x
)  =/=  Q  <->  ( T `  x )  =  Q )
104102, 103sylib 200 . . . . 5  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( T `  x )  =  Q )
105 nmlno0.0 . . . . . . . 8  |-  Z  =  ( U  0op  W
)
1062, 15, 1050oval 26429 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  x  e.  X )  ->  ( Z `  x )  =  Q )
1071, 12, 106mp3an12 1354 . . . . . 6  |-  ( x  e.  X  ->  ( Z `  x )  =  Q )
108107adantl 468 . . . . 5  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( Z `  x )  =  Q )
109104, 108eqtr4d 2488 . . . 4  |-  ( ( ( N `  T
)  =  0  /\  x  e.  X )  ->  ( T `  x )  =  ( Z `  x ) )
110109ralrimiva 2802 . . 3  |-  ( ( N `  T )  =  0  ->  A. x  e.  X  ( T `  x )  =  ( Z `  x ) )
111 ffn 5728 . . . . 5  |-  ( T : X --> Y  ->  T  Fn  X )
11227, 111ax-mp 5 . . . 4  |-  T  Fn  X
1132, 14, 1050oo 26430 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z : X --> Y )
1141, 12, 113mp2an 678 . . . . 5  |-  Z : X
--> Y
115 ffn 5728 . . . . 5  |-  ( Z : X --> Y  ->  Z  Fn  X )
116114, 115ax-mp 5 . . . 4  |-  Z  Fn  X
117 eqfnfv 5976 . . . 4  |-  ( ( T  Fn  X  /\  Z  Fn  X )  ->  ( T  =  Z  <->  A. x  e.  X  ( T `  x )  =  ( Z `  x ) ) )
118112, 116, 117mp2an 678 . . 3  |-  ( T  =  Z  <->  A. x  e.  X  ( T `  x )  =  ( Z `  x ) )
119110, 118sylibr 216 . 2  |-  ( ( N `  T )  =  0  ->  T  =  Z )
120 fveq2 5865 . . 3  |-  ( T  =  Z  ->  ( N `  T )  =  ( N `  Z ) )
12187, 105nmoo0 26432 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( N `  Z )  =  0 )
1221, 12, 121mp2an 678 . . 3  |-  ( N `
 Z )  =  0
123120, 122syl6eq 2501 . 2  |-  ( T  =  Z  ->  ( N `  T )  =  0 )
124119, 123impbii 191 1  |-  ( ( N `  T )  =  0  <->  T  =  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   {cab 2437    =/= wne 2622   A.wral 2737   E.wrex 2738    C_ wss 3404   class class class wbr 4402    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   supcsup 7954   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540   RR*cxr 9674    < clt 9675    <_ cle 9676    / cdiv 10269   NrmCVeccnv 26203   BaseSetcba 26205   .sOLDcns 26206   0veccn0v 26207   normCVcnmcv 26209    LnOp clno 26381   normOpOLDcnmoo 26382    0op c0o 26384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-grpo 25919  df-gid 25920  df-ginv 25921  df-ablo 26010  df-vc 26165  df-nv 26211  df-va 26214  df-ba 26215  df-sm 26216  df-0v 26217  df-nmcv 26219  df-lno 26385  df-nmoo 26386  df-0o 26388
This theorem is referenced by:  nmlno0i  26435
  Copyright terms: Public domain W3C validator