MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nminvr Structured version   Unicode version

Theorem nminvr 20929
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nminvr.n  |-  N  =  ( norm `  R
)
nminvr.u  |-  U  =  (Unit `  R )
nminvr.i  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
nminvr  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  ( I `  A
) )  =  ( 1  /  ( N `
 A ) ) )

Proof of Theorem nminvr
StepHypRef Expression
1 nzrrng 17703 . . . . . . 7  |-  ( R  e. NzRing  ->  R  e.  Ring )
213ad2ant2 1018 . . . . . 6  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  R  e.  Ring )
3 simp3 998 . . . . . 6  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  A  e.  U )
4 nminvr.u . . . . . . 7  |-  U  =  (Unit `  R )
5 nminvr.i . . . . . . 7  |-  I  =  ( invr `  R
)
6 eqid 2467 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
7 eqid 2467 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
84, 5, 6, 7unitrinv 17123 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  e.  U )  ->  ( A ( .r `  R ) ( I `
 A ) )  =  ( 1r `  R ) )
92, 3, 8syl2anc 661 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( A
( .r `  R
) ( I `  A ) )  =  ( 1r `  R
) )
109fveq2d 5869 . . . 4  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  ( A ( .r
`  R ) ( I `  A ) ) )  =  ( N `  ( 1r
`  R ) ) )
11 simp1 996 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  R  e. NrmRing )
12 eqid 2467 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
1312, 4unitcl 17104 . . . . . 6  |-  ( A  e.  U  ->  A  e.  ( Base `  R
) )
14133ad2ant3 1019 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  A  e.  ( Base `  R )
)
154, 5, 12rnginvcl 17121 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  e.  U )  ->  (
I `  A )  e.  ( Base `  R
) )
162, 3, 15syl2anc 661 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( I `  A )  e.  (
Base `  R )
)
17 nminvr.n . . . . . 6  |-  N  =  ( norm `  R
)
1812, 17, 6nmmul 20924 . . . . 5  |-  ( ( R  e. NrmRing  /\  A  e.  ( Base `  R
)  /\  ( I `  A )  e.  (
Base `  R )
)  ->  ( N `  ( A ( .r
`  R ) ( I `  A ) ) )  =  ( ( N `  A
)  x.  ( N `
 ( I `  A ) ) ) )
1911, 14, 16, 18syl3anc 1228 . . . 4  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  ( A ( .r
`  R ) ( I `  A ) ) )  =  ( ( N `  A
)  x.  ( N `
 ( I `  A ) ) ) )
2017, 7nm1 20927 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing
)  ->  ( N `  ( 1r `  R
) )  =  1 )
21203adant3 1016 . . . 4  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  ( 1r `  R
) )  =  1 )
2210, 19, 213eqtr3d 2516 . . 3  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( ( N `  A )  x.  ( N `  (
I `  A )
) )  =  1 )
23 ax-1cn 9549 . . . . 5  |-  1  e.  CC
2423a1i 11 . . . 4  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  1  e.  CC )
25 nrgngp 20922 . . . . . . 7  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
26253ad2ant1 1017 . . . . . 6  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  R  e. NrmGrp )
2712, 17nmcl 20886 . . . . . 6  |-  ( ( R  e. NrmGrp  /\  A  e.  ( Base `  R
) )  ->  ( N `  A )  e.  RR )
2826, 14, 27syl2anc 661 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  A )  e.  RR )
2928recnd 9621 . . . 4  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  A )  e.  CC )
3012, 17nmcl 20886 . . . . . 6  |-  ( ( R  e. NrmGrp  /\  (
I `  A )  e.  ( Base `  R
) )  ->  ( N `  ( I `  A ) )  e.  RR )
3126, 16, 30syl2anc 661 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  ( I `  A
) )  e.  RR )
3231recnd 9621 . . . 4  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  ( I `  A
) )  e.  CC )
3317, 4unitnmn0 20928 . . . 4  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  A )  =/=  0
)
3424, 29, 32, 33divmuld 10341 . . 3  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( (
1  /  ( N `
 A ) )  =  ( N `  ( I `  A
) )  <->  ( ( N `  A )  x.  ( N `  (
I `  A )
) )  =  1 ) )
3522, 34mpbird 232 . 2  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( 1  /  ( N `  A ) )  =  ( N `  (
I `  A )
) )
3635eqcomd 2475 1  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  A  e.  U
)  ->  ( N `  ( I `  A
) )  =  ( 1  /  ( N `
 A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   1c1 9492    x. cmul 9496    / cdiv 10205   Basecbs 14489   .rcmulr 14555   1rcur 16952   Ringcrg 16995  Unitcui 17084   invrcinvr 17116  NzRingcnzr 17699   normcnm 20848  NrmGrpcngp 20849  NrmRingcnrg 20851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ico 11534  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-0g 14696  df-topgen 14698  df-mnd 15731  df-grp 15864  df-minusg 15865  df-mgp 16941  df-ur 16953  df-rng 16997  df-oppr 17068  df-dvdsr 17086  df-unit 17087  df-invr 17117  df-abv 17261  df-nzr 17700  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-xms 20574  df-ms 20575  df-nm 20854  df-ngp 20855  df-nrg 20857
This theorem is referenced by:  nmdvr  20930
  Copyright terms: Public domain W3C validator