MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Structured version   Unicode version

Theorem nmfval 20844
Description: The value of the norm function. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n  |-  N  =  ( norm `  W
)
nmfval.x  |-  X  =  ( Base `  W
)
nmfval.z  |-  .0.  =  ( 0g `  W )
nmfval.d  |-  D  =  ( dist `  W
)
Assertion
Ref Expression
nmfval  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Distinct variable groups:    x, D    x, W    x, X    x,  .0.
Allowed substitution hint:    N( x)

Proof of Theorem nmfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2  |-  N  =  ( norm `  W
)
2 fveq2 5864 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
3 nmfval.x . . . . . 6  |-  X  =  ( Base `  W
)
42, 3syl6eqr 2526 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  X )
5 fveq2 5864 . . . . . . 7  |-  ( w  =  W  ->  ( dist `  w )  =  ( dist `  W
) )
6 nmfval.d . . . . . . 7  |-  D  =  ( dist `  W
)
75, 6syl6eqr 2526 . . . . . 6  |-  ( w  =  W  ->  ( dist `  w )  =  D )
8 eqidd 2468 . . . . . 6  |-  ( w  =  W  ->  x  =  x )
9 fveq2 5864 . . . . . . 7  |-  ( w  =  W  ->  ( 0g `  w )  =  ( 0g `  W
) )
10 nmfval.z . . . . . . 7  |-  .0.  =  ( 0g `  W )
119, 10syl6eqr 2526 . . . . . 6  |-  ( w  =  W  ->  ( 0g `  w )  =  .0.  )
127, 8, 11oveq123d 6303 . . . . 5  |-  ( w  =  W  ->  (
x ( dist `  w
) ( 0g `  w ) )  =  ( x D  .0.  ) )
134, 12mpteq12dv 4525 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
14 df-nm 20838 . . . 4  |-  norm  =  ( w  e.  _V  |->  ( x  e.  ( Base `  w )  |->  ( x ( dist `  w
) ( 0g `  w ) ) ) )
15 eqid 2467 . . . . . 6  |-  ( x  e.  X  |->  ( x D  .0.  ) )  =  ( x  e.  X  |->  ( x D  .0.  ) )
16 df-ov 6285 . . . . . . . 8  |-  ( x D  .0.  )  =  ( D `  <. x ,  .0.  >. )
17 fvrn0 5886 . . . . . . . 8  |-  ( D `
 <. x ,  .0.  >.
)  e.  ( ran 
D  u.  { (/) } )
1816, 17eqeltri 2551 . . . . . . 7  |-  ( x D  .0.  )  e.  ( ran  D  u.  {
(/) } )
1918a1i 11 . . . . . 6  |-  ( x  e.  X  ->  (
x D  .0.  )  e.  ( ran  D  u.  {
(/) } ) )
2015, 19fmpti 6042 . . . . 5  |-  ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran 
D  u.  { (/) } )
21 fvex 5874 . . . . . 6  |-  ( Base `  W )  e.  _V
223, 21eqeltri 2551 . . . . 5  |-  X  e. 
_V
23 fvex 5874 . . . . . . . 8  |-  ( dist `  W )  e.  _V
246, 23eqeltri 2551 . . . . . . 7  |-  D  e. 
_V
2524rnex 6715 . . . . . 6  |-  ran  D  e.  _V
26 p0ex 4634 . . . . . 6  |-  { (/) }  e.  _V
2725, 26unex 6580 . . . . 5  |-  ( ran 
D  u.  { (/) } )  e.  _V
28 fex2 6736 . . . . 5  |-  ( ( ( x  e.  X  |->  ( x D  .0.  ) ) : X --> ( ran  D  u.  { (/)
} )  /\  X  e.  _V  /\  ( ran 
D  u.  { (/) } )  e.  _V )  ->  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V )
2920, 22, 27, 28mp3an 1324 . . . 4  |-  ( x  e.  X  |->  ( x D  .0.  ) )  e.  _V
3013, 14, 29fvmpt 5948 . . 3  |-  ( W  e.  _V  ->  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
31 fvprc 5858 . . . . 5  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  (/) )
32 mpt0 5706 . . . . 5  |-  ( x  e.  (/)  |->  ( x D  .0.  ) )  =  (/)
3331, 32syl6eqr 2526 . . . 4  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
34 fvprc 5858 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
353, 34syl5eq 2520 . . . . 5  |-  ( -.  W  e.  _V  ->  X  =  (/) )
3635mpteq1d 4528 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  X  |->  ( x D  .0.  )
)  =  ( x  e.  (/)  |->  ( x D  .0.  ) ) )
3733, 36eqtr4d 2511 . . 3  |-  ( -.  W  e.  _V  ->  (
norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  ) ) )
3830, 37pm2.61i 164 . 2  |-  ( norm `  W )  =  ( x  e.  X  |->  ( x D  .0.  )
)
391, 38eqtri 2496 1  |-  N  =  ( x  e.  X  |->  ( x D  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   (/)c0 3785   {csn 4027   <.cop 4033    |-> cmpt 4505   ran crn 5000   -->wf 5582   ` cfv 5586  (class class class)co 6282   Basecbs 14486   distcds 14560   0gc0g 14691   normcnm 20832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285  df-nm 20838
This theorem is referenced by:  nmval  20845  nmfval2  20846  nmpropd  20849  subgnm  20882  tngnm  20900  cnfldnm  21021  nmcn  21084  ressnm  27301
  Copyright terms: Public domain W3C validator